Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Walley P. — Statistical reasoning with imprecise probabilities
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Statistical reasoning with imprecise probabilities
Àâòîð: Walley P.
Àííîòàöèÿ: This text presents a theory of probabilistic reasoning, statistical inference and decision. The book is concerned with the problems of reasoning under conditions of uncertainty, partial information and ignorance. It is argued that, in order to give appropriate weight to both ignorance and uncertainty, imprecise probabilities need to be assessed. The imprecision can be modelled mathematically by upper and lower probabilities or (more generally) upper and lower previsions. The degree of imprecision can reflect both the amount of information on which probabilities are based and the extent of conflict between different types of information. The book develops mathematical methods for reasoning using imprecise probabilities. These include methods for assessing probabilities, modifying the assessments to achieve coherence, updating them to take account of new information, and combining them to calculate other probabilities, draw conclusions and make decisions. The methods are extended in the second half of the book to construct a general theory of conditional probability and statistical inference. The mathematical theory is based on simple and compelling principles of avoiding sure loss, coherence and natural extension. Careful attention is given to the philosophical foundations, interpretation and justification of the theory. It is compared with alternate theories of inference, including Bayesian theories (which require all probability assesments to be precise), Bayesian sensitivity analysis, the Neyman-Pearson theory of confidence intervals, the Dempster-Shafer theory of belief functions and the theory of fuzzy sets. The theory is applicable to a wide range of disciplines including statistics, decision theory, economics, psychology, philosophy of science, management science, operations research, engineering and artificial intelligence. (References are given to related work in these fields). In fact, the theory has important implications for any field in which the problems of uncertainty and limited information are taken seriously. This book should be of interest to researchers in statistics and those in related disciplines.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1991
Êîëè÷åñòâî ñòðàíèö: 706
Äîáàâëåíà â êàòàëîã: 10.12.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Hahn — Banach theorem 139 506 611
Hahn — Banach to joint previsions 314—17 405 415 24 452—57
Hahn — Banach to linear previsions 136—39 418—21 427—28 433
Hahn — Banach to posterior previsions 424—34 640—41
Hahn — Banach to predictive previsions 314 421—24
Hahn — Banach via generalized Bayes rule 318 425—27 429 431—32
Hahn — Banach, as lower envelope of Bayesian priors 418
Hahn — Banach, basic properties 123 409—10
Hahn — Banach, behavioural meaning 122 408—09
Hahn — Banach, computation 128 130 136 174—76 316
Hahn — Banach, existence of 416 422
Hahn — Banach, from a linear space 125—27
Hahn — Banach, independent 453—57
Hahn — Banach, maximal coherent 126
Hahn — Banach, natural 30—31 121—32 408—15
Hahn — Banach, regular 582 616 639—41
Hahn — Banach, relation to coherence 74 122—23 408—11
Hahn — Banach, role in assessment and elicitation 35—36 171—72
Hahn — Banach, role in statistical reasoning 406
Hahn — Banach, satisfies likelihood principle 427 431—32
Hahn — Banach, to prior previsions 415—24
Hahn — Banach, to unconditional previsions (see also Extension to Extension to
Hahn — Banach, typically non-vacuous 368 417
Hahn — Banach, uniqueness of 129 138 419—20 428
Hailperin, T. 489 503
Haldane density (see Density function Haldane)
Haldane, J.B.S. 223 228 526 527 542
Hall, W.I. 228 518 525
Halmos, P.R. 502 506 588
Hamblin, C.L. 514
Hampton, J.M. 510
Harsanyi, J.C. 519
Hartigan, J.A. 230 488 498 517 527 528 535 536 568 576
Heath, D.C. 374 390 495 496 502 557 566 567 568 571 573 575 579 590 591 602
Hempel, C.G. 482
Hernandez, A. 517 518 536
Hersh, H.M. 539
Hewitt, E. 590 591
Hey, J.D. 519
Hill, B.M. 485 527 528 555 556 557 558 568
Hinkley, D.V. 386 483 489 500 525 526 527 528 567 569 570 572 573 583 592
Hisdal, E. 539
Hodges, J.L. 501
Hogarth, R.M. 44 48 480 482 488 501 510 532 535 536 623
Holmes, R.B. 505 608 610 611 612 613
Hora, R.B. 568
Horse racing, betting on 94—95 602—07
Huber, G.P. 510
Huber, P.J. 44 49 479 493 494 495 496 497 502 503 505 517 518 536 563 564
Hull, C.L. 481
Hunter, J.S. 565
Hunter, W.G. 565
Hyperparameter 260
Hyperplane separating 133 611
Hyperplane separating, simplex representation for 176
Hyperplane separating, strictly separating 611—12
Hyperplane separating, strongly separating 612
Hyperplane separating, supporting 146
Hyperplane theorems 611—12
Hyperprior 260
Hypotheses, statistical (see Models sampling)
Hypothesis testing, examples of 233 583
Idealization in model building 39 117
Idealization in model building of precise measurement 329 436—40
Idealization in model building of precise probabilities 249—50
Identifiability 350 471 563
Ignorance 226—35
Ignorance, about a chance 228—29
Ignorance, about a finite space 227—28
Ignorance, about a location parameter 229—34
Ignorance, about a positive integer 322
Ignorance, Bayesian models for 223—24 226—35
Ignorance, beta model for 218—21 621 641
Ignorance, complete 92—93 226—27 270 445 458 462
Ignorance, consistent with precise prior 310 391—92
Ignorance, consistent with prior ignorance 308 391 696
Ignorance, implies posterior ignorance 367—69 428—29 vacuous)
Ignorance, near 206 218 235
Ignorance, prior 367 417
Imprecision in probabilities 210
Imprecision in probabilities as measure of information 211—12 222
Imprecision in probabilities in football experiment 633—34
Imprecision in probabilities in second-order probabilities 260—61
Imprecision in probabilities, arguments against 235—53
Imprecision in probabilities, arguments for 3—8 212—17
Imprecision in probabilities, degree of 210 219 224—26 468
Imprecision in probabilities, due to conflict between information 213 222—26
Imprecision in probabilities, due to lack of information 212—13 217—22 224—26
Imprecision in probabilities, models for 50—51 159—60 253—81
Imprecision in probabilities, sources of 212—17 (see also Indeterminacy Precision
Improper prior (see Density function improper)
Inadmissibility (see Admissibility)
Incoherence examples of 29 67 72 85—86 198 99 300 601 605 636
Incoherence examples of standard statistical models 370 372 373—76 382—83
Incoherence examples, models 104—05 173 212 215—17
Inconsistency (see Conflict)
Indecision 226 235—41
Indecision, versus suspension of judgement 239 530
Indecision, ways of resolving 238—41
Independence 443—57
Independence as a structural judgement 473
Independence of events 443—48
Independence of experiments 448—57
Independence, behavioural meaning 443 448
Independence, conditional 451
Independence, epistemic 443—44 448
Independence, grounds for 444—45
Independence, linear 596
Independence, logical 445
Independence, physical 444
Independence, sensitivity analysis definitions 446—48 454—57
Independence, standard definitions 445—46 448—51
Indeterminacy 209—10
Indeterminacy in conditional previsions 306—07 328—29
Indeterminacy in likelihood function 436
Indeterminacy in posterior previsions 395—96 436— 40
Indeterminacy, experimental evidence for 48 116—17 254 532 633
Indeterminacy, judgements of 474 476
Indeterminacy, may produce indecision 161—62 236
Indeterminacy, physical 215 357—58 468
Indeterminacy, sources of 212—15
Indeterminacy, versus incompleteness 104—06 212
Indicator function 81
Indifference, principle of (see Principle of indifference)
Induction (see Logic inductive)
Inference (see Reasoning)
Inference, arguments for 434—37 568
Inference, Bayesian 5 42—43 393—97
Inference, behavioural theories 21—23 109 10
Inference, examples of incoherence 369—76 379 382—85
Inference, fiducial 373 382
Inference, frequentist 377—88 (see also Confidence intervals)
Inference, from imprecise priors 217—26 397—403 424—34
Inference, from improper priors 369—77 417 18 420—21
Inference, likelihood 377
Inference, Neyman-Pearson (see Confidence intervals)
Inference, not consistent with prior ignorance 368—69 417—18 420—21
Inference, objections to 109—119
Inference, objective 43 226—35 266—72 369—77
Inference, objective methods 367 373—74 377
Inference, pivotal 374
Inference, requires non-vacuous prior beliefs 110 367—69 387 391 417 429
Inference, rom noninformative priors 226—35 369—77 383
Inference, standard 393—97
Inference, statistical 21—22 406 424
Inference, structural 373
Inference, subjective 43
Inference, versus decision 21 109
Infimum 58
information 33
Information, amount of 222
Information, assessment of (see Assessment Strategies assessment
Information, can increase indeterminacy 223—26 298—300 433 551
Information, combination of (see Combination of assessments conflicting)
Information, comparison of measures 211—12 268 523—24
Information, incomplete (see Information partial
Information, modelled as an event 300—01 336 39
Information, needed to determine conditional previsions 329—34 437—40
Information, new 336—38
Information, partial 212—13
Information, prior 110 114 221—22
Information, reflected in degree of imprecision 3—4 211 220 222
Information, relation to sample size 213 222
Information, relevant 33 444
Information, Shannonb’s theory of 268 523—24
Information, statistical 434—35
Information, symmetric 33 227 458 461—62 Ignorance)
Information, versus old 338
Initial conditions 355 358—59
Instability in elicitation 216—17
Instability in elicitation of relative frequencies 359 469
Instability in elicitation physical 215 358—59
Insurance premiums 95 245 532
Integral, constructed from measure 128—29
Integral, Daniell 493
Integral, Lebesgue 132 493
Intentional systems 17—18
Interpretations allows irrational judgements 32 110 253
Interpretations and conglomerability 312—13 327
Interpretations as version of sensitivity analysis 107
Interpretations in decision making 238
Interpretations in inductive logic 34—35 44—45 48—49
Interpretations objective, see aleatory or logical observational 14—16
Interpretations of elicited probabilities 173 477
Interpretations of probability and prevision 13—17 101—108
Interpretations of probability and prevision, aleatory (see also Frequency or propensity)
Interpretations of probability and prevision, behavioural 14—24 61—63 109—10
Interpretations of probability and prevision, constructive 14—16
Interpretations of probability and prevision, contingent 284—85
Interpretations of probability and prevision, descriptive 361
Interpretations of probability and prevision, direct 105 357
Interpretations of probability and prevision, dispositional 15 16 18—20
Interpretations of probability and prevision, empirical 14—17 102
Interpretations of probability and prevision, epistemological, see logical evidential 14 22—24
Interpretations of probability and prevision, exhaustive 62 104—05 251 476
Interpretations of probability and prevision, finite 350—51 357—58
Interpretations of probability and prevision, frequency 16 49
Interpretations of probability and prevision, incomplete 104—05 285
Interpretations of probability and prevision, instrumentalist 360—61 698
Interpretations of probability and prevision, limiting 49 80—81 351 358 378
Interpretations of probability and prevision, minimal 20—21 61—63
Interpretations of probability and prevision, needed in inference 15 100
Interpretations of probability and prevision, objections to 109—19
Interpretations of probability and prevision, of sampling models 111 14 349 59 465—66
Interpretations of probability and prevision, relation to aleatory 17 353—54 357
Interpretations of probability and prevision, relation to epistemic 17 102 353 54 357
Interpretations of probability and prevision, versus evidential 22—24
Interpretations of probability and prevision, versus sensitivity analysis 105—08 476—77
Interpretations of structural judgements 108 446—48 456—57 460 477
Interpretations operational 15 20 102—03
Interpretations personalist 14 43
Interpretations propensity 16—17 351—55 358
Interpretations rationalistic 14—15 102
Interpretations reductionist 112—13 361 465—67
Interpretations sensitivity analysis 7 105—08 253—58
Interpretations, based on dogma of ideal precision 7 105 254
Interpretations, intersubjective 361
Interpretations, logical 14—16 43 102 267
Interpretations, subjective 15—16 103
Interpretations, updated 284—86
Interpretations, versus behavioural interpretation 107—08 477
Interval estimation (see Confidence intervals Credible
Interval of measures 201—02
Invariance 139—45 231
Invariance, permutation 457
Invariance, shift 97—98 143—44
Invariance, translation 98—100 140 144—45 229—30
Irrelevance 444 (see also Independence)
Isaacs, H.H. 536
Jain, R. 538
Jameson, G.J.O. 506 608
Janis, I.L. 484
Jaynes, E.T. 11 23 43 228 266 267 271 486 525 526 527 528 540 541 542 590 591 592
Jech, TJ. 506
Jeffrey, R.C. 43 339 481 483 485 490 491 492 525 533 543 544 560
Jeffreyb’s rule 339
Jeffreys, H. 16 23 43 45 113 223 228 229 232 238 241 244 245 362 373 478 486 500 520 525 526 527 528 532 567 571
Jenkins, G.M. 558 646
Jepson, C. 664
Johnson, R.W. 540
Johnson, W.E. 589
Judgement 167—71 (see also Assessment Elicitation)
Judgement, ambiguous versus imprecise 263
Judgement, arbitrary 173—74 210 237 241
Judgement, classificatory 188—91
Judgement, comparative 191—97
Judgement, effect of new 177—80
Judgement, equivalence 472
Judgement, of desirability 169—70 474
Judgement, structural 472—77
Judgement, suspending 226 239
Judgement, types of 169—71 472—74
Kadane, J.B. 323 496 536 555 557 558 559 667
Kahneman, D. 488 501 536
Kanal, L.N. 490
Kaplan, M. 515 516 588
Karmarkar, N. 511
Kekes, J. 484
Kelley, J.L. 506 608 609 610
Kemeny, J. 494
Kempthorne, O. 386 483 558 559 562 569 572 573 584 585
Kent, S. 514 539
Keynes, J.M. ix 23 34 44 45 113 238 244 486 487 489 497 515 516 522 523 526 532 585
Keynesb’s theory of probability 44—45
Kickert, W.J.M. 538 539 540
Kiefer, J. 387 570 572
Kingman, J.F.C. 590
Kmietowicz, Z.W. 48 507 536
Kneale, W. 514
Knight, F.H. 209 489 519
Knill — Jones, R.P. 50 490
Kolmogorov, A.N. 32 282 306 307 327 489 549 553 558 561
Kolmogorov’s condition 306
Kolmogorov’s theory of conditional probability 306—08
Kolmogorov’s theory of conditional probability, compared to de Finettib’s theory 282 327
Koopman, B.O. 45 515 557
Kraft, C. 515 601
Krantz, D.H. 515 664
Krein — Milman theorem 613
Kudo, H. 517 518 536
Kuhn, T.S. 478
Kullback, S. 523
Kumar, A. 49 592
Kunda, Z. 664
Kunreuther, H. 48 501 532
Kyburg, H.E. 34 44 48 238 479 480 484 486 487 488 501 529 531 536 562 563 590 591 592
Lad, F.R. 482 488 499
Lane, D.A. 555 556 566 568 573 579
Laplace, P.S. de 43 220 228 377 521 522 525 527 569
Laplaceb’s rule of succession 220
Lauritzen, S.L. 49 490
Laws of large numbers 352
Laws of large numbers for imprecise probabilities 359 564
Laws, deterministic versus statistical 352 355
Learner, E.E. 44 47 492 493 518 521 525 536 565 623
Lebesgue lower prevision 98—99 132
Lebesgue lower prevision is fully conglomerable 325
Lebesgue measure (on real line) 229—30 (see also Density function improper uniform)
Lebesgue measure (on unit interval) 98—99
Lebesgue measure (on unit interval), additive extensions 132 136—37 144—45 325—27
Ðåêëàìà