Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Walley P. — Statistical reasoning with imprecise probabilities
Walley P. — Statistical reasoning with imprecise probabilities



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Statistical reasoning with imprecise probabilities

Àâòîð: Walley P.

Àííîòàöèÿ:

This text presents a theory of probabilistic reasoning, statistical inference and decision. The book is concerned with the problems of reasoning under conditions of uncertainty, partial information and ignorance. It is argued that, in order to give appropriate weight to both ignorance and uncertainty, imprecise probabilities need to be assessed. The imprecision can be modelled mathematically by upper and lower probabilities or (more generally) upper and lower previsions. The degree of imprecision can reflect both the amount of information on which probabilities are based and the extent of conflict between different types of information. The book develops mathematical methods for reasoning using imprecise probabilities. These include methods for assessing probabilities, modifying the assessments to achieve coherence, updating them to take account of new information, and combining them to calculate other probabilities, draw conclusions and make decisions. The methods are extended in the second half of the book to construct a general theory of conditional probability and statistical inference. The mathematical theory is based on simple and compelling principles of avoiding sure loss, coherence and natural extension. Careful attention is given to the philosophical foundations, interpretation and justification of the theory. It is compared with alternate theories of inference, including Bayesian theories (which require all probability assesments to be precise), Bayesian sensitivity analysis, the Neyman-Pearson theory of confidence intervals, the Dempster-Shafer theory of belief functions and the theory of fuzzy sets. The theory is applicable to a wide range of disciplines including statistics, decision theory, economics, psychology, philosophy of science, management science, operations research, engineering and artificial intelligence. (References are given to related work in these fields). In fact, the theory has important implications for any field in which the problems of uncertainty and limited information are taken seriously. This book should be of interest to researchers in statistics and those in related disciplines.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1991

Êîëè÷åñòâî ñòðàíèö: 706

Äîáàâëåíà â êàòàëîã: 10.12.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Hahn — Banach theorem      139 506 611
Hahn — Banach to joint previsions      314—17 405 415 24 452—57
Hahn — Banach to linear previsions      136—39 418—21 427—28 433
Hahn — Banach to posterior previsions      424—34 640—41
Hahn — Banach to predictive previsions      314 421—24
Hahn — Banach via generalized Bayes rule      318 425—27 429 431—32
Hahn — Banach, as lower envelope of Bayesian priors      418
Hahn — Banach, basic properties      123 409—10
Hahn — Banach, behavioural meaning      122 408—09
Hahn — Banach, computation      128 130 136 174—76 316
Hahn — Banach, existence of      416 422
Hahn — Banach, from a linear space      125—27
Hahn — Banach, independent      453—57
Hahn — Banach, maximal coherent      126
Hahn — Banach, natural      30—31 121—32 408—15
Hahn — Banach, regular      582 616 639—41
Hahn — Banach, relation to coherence      74 122—23 408—11
Hahn — Banach, role in assessment and elicitation      35—36 171—72
Hahn — Banach, role in statistical reasoning      406
Hahn — Banach, satisfies likelihood principle      427 431—32
Hahn — Banach, to prior previsions      415—24
Hahn — Banach, to unconditional previsions      (see also Extension to Extension to
Hahn — Banach, typically non-vacuous      368 417
Hahn — Banach, uniqueness of      129 138 419—20 428
Hailperin, T.      489 503
Haldane density      (see Density function Haldane)
Haldane, J.B.S.      223 228 526 527 542
Hall, W.I.      228 518 525
Halmos, P.R.      502 506 588
Hamblin, C.L.      514
Hampton, J.M.      510
Harsanyi, J.C.      519
Hartigan, J.A.      230 488 498 517 527 528 535 536 568 576
Heath, D.C.      374 390 495 496 502 557 566 567 568 571 573 575 579 590 591 602
Hempel, C.G.      482
Hernandez, A.      517 518 536
Hersh, H.M.      539
Hewitt, E.      590 591
Hey, J.D.      519
Hill, B.M.      485 527 528 555 556 557 558 568
Hinkley, D.V.      386 483 489 500 525 526 527 528 567 569 570 572 573 583 592
Hisdal, E.      539
Hodges, J.L.      501
Hogarth, R.M.      44 48 480 482 488 501 510 532 535 536 623
Holmes, R.B.      505 608 610 611 612 613
Hora, R.B.      568
Horse racing, betting on      94—95 602—07
Huber, G.P.      510
Huber, P.J.      44 49 479 493 494 495 496 497 502 503 505 517 518 536 563 564
Hull, C.L.      481
Hunter, J.S.      565
Hunter, W.G.      565
Hyperparameter      260
Hyperplane separating      133 611
Hyperplane separating, simplex representation for      176
Hyperplane separating, strictly separating      611—12
Hyperplane separating, strongly separating      612
Hyperplane separating, supporting      146
Hyperplane theorems      611—12
Hyperprior      260
Hypotheses, statistical      (see Models sampling)
Hypothesis testing, examples of      233 583
Idealization in model building      39 117
Idealization in model building of precise measurement      329 436—40
Idealization in model building of precise probabilities      249—50
Identifiability      350 471 563
Ignorance      226—35
Ignorance, about a chance      228—29
Ignorance, about a finite space      227—28
Ignorance, about a location parameter      229—34
Ignorance, about a positive integer      322
Ignorance, Bayesian models for      223—24 226—35
Ignorance, beta model for      218—21 621 641
Ignorance, complete      92—93 226—27 270 445 458 462
Ignorance, consistent with precise prior      310 391—92
Ignorance, consistent with prior ignorance      308 391 696
Ignorance, implies posterior ignorance      367—69 428—29 vacuous)
Ignorance, near      206 218 235
Ignorance, prior      367 417
Imprecision in probabilities      210
Imprecision in probabilities as measure of information      211—12 222
Imprecision in probabilities in football experiment      633—34
Imprecision in probabilities in second-order probabilities      260—61
Imprecision in probabilities, arguments against      235—53
Imprecision in probabilities, arguments for      3—8 212—17
Imprecision in probabilities, degree of      210 219 224—26 468
Imprecision in probabilities, due to conflict between information      213 222—26
Imprecision in probabilities, due to lack of information      212—13 217—22 224—26
Imprecision in probabilities, models for      50—51 159—60 253—81
Imprecision in probabilities, sources of      212—17 (see also Indeterminacy Precision
Improper prior      (see Density function improper)
Inadmissibility      (see Admissibility)
Incoherence examples of      29 67 72 85—86 198 99 300 601 605 636
Incoherence examples of standard statistical models      370 372 373—76 382—83
Incoherence examples, models      104—05 173 212 215—17
Inconsistency      (see Conflict)
Indecision      226 235—41
Indecision, versus suspension of judgement      239 530
Indecision, ways of resolving      238—41
Independence      443—57
Independence as a structural judgement      473
Independence of events      443—48
Independence of experiments      448—57
Independence, behavioural meaning      443 448
Independence, conditional      451
Independence, epistemic      443—44 448
Independence, grounds for      444—45
Independence, linear      596
Independence, logical      445
Independence, physical      444
Independence, sensitivity analysis definitions      446—48 454—57
Independence, standard definitions      445—46 448—51
Indeterminacy      209—10
Indeterminacy in conditional previsions      306—07 328—29
Indeterminacy in likelihood function      436
Indeterminacy in posterior previsions      395—96 436— 40
Indeterminacy, experimental evidence for      48 116—17 254 532 633
Indeterminacy, judgements of      474 476
Indeterminacy, may produce indecision      161—62 236
Indeterminacy, physical      215 357—58 468
Indeterminacy, sources of      212—15
Indeterminacy, versus incompleteness      104—06 212
Indicator function      81
Indifference, principle of      (see Principle of indifference)
Induction      (see Logic inductive)
Inference      (see Reasoning)
Inference, arguments for      434—37 568
Inference, Bayesian      5 42—43 393—97
Inference, behavioural theories      21—23 109 10
Inference, examples of incoherence      369—76 379 382—85
Inference, fiducial      373 382
Inference, frequentist      377—88 (see also Confidence intervals)
Inference, from imprecise priors      217—26 397—403 424—34
Inference, from improper priors      369—77 417 18 420—21
Inference, likelihood      377
Inference, Neyman-Pearson      (see Confidence intervals)
Inference, not consistent with prior ignorance      368—69 417—18 420—21
Inference, objections to      109—119
Inference, objective      43 226—35 266—72 369—77
Inference, objective methods      367 373—74 377
Inference, pivotal      374
Inference, requires non-vacuous prior beliefs      110 367—69 387 391 417 429
Inference, rom noninformative priors      226—35 369—77 383
Inference, standard      393—97
Inference, statistical      21—22 406 424
Inference, structural      373
Inference, subjective      43
Inference, versus decision      21 109
Infimum      58
information      33
Information, amount of      222
Information, assessment of      (see Assessment Strategies assessment
Information, can increase indeterminacy      223—26 298—300 433 551
Information, combination of      (see Combination of assessments conflicting)
Information, comparison of measures      211—12 268 523—24
Information, incomplete      (see Information partial
Information, modelled as an event      300—01 336 39
Information, needed to determine conditional previsions      329—34 437—40
Information, new      336—38
Information, partial      212—13
Information, prior      110 114 221—22
Information, reflected in degree of imprecision      3—4 211 220 222
Information, relation to sample size      213 222
Information, relevant      33 444
Information, Shannonb’s theory of      268 523—24
Information, statistical      434—35
Information, symmetric      33 227 458 461—62 Ignorance)
Information, versus old      338
Initial conditions      355 358—59
Instability in elicitation      216—17
Instability in elicitation of relative frequencies      359 469
Instability in elicitation physical      215 358—59
Insurance premiums      95 245 532
Integral, constructed from measure      128—29
Integral, Daniell      493
Integral, Lebesgue      132 493
Intentional systems      17—18
Interpretations allows irrational judgements      32 110 253
Interpretations and conglomerability      312—13 327
Interpretations as version of sensitivity analysis      107
Interpretations in decision making      238
Interpretations in inductive logic      34—35 44—45 48—49
Interpretations objective, see aleatory or logical observational      14—16
Interpretations of elicited probabilities      173 477
Interpretations of probability and prevision      13—17 101—108
Interpretations of probability and prevision, aleatory      (see also Frequency or propensity)
Interpretations of probability and prevision, behavioural      14—24 61—63 109—10
Interpretations of probability and prevision, constructive      14—16
Interpretations of probability and prevision, contingent      284—85
Interpretations of probability and prevision, descriptive      361
Interpretations of probability and prevision, direct      105 357
Interpretations of probability and prevision, dispositional      15 16 18—20
Interpretations of probability and prevision, empirical      14—17 102
Interpretations of probability and prevision, epistemological, see logical evidential      14 22—24
Interpretations of probability and prevision, exhaustive      62 104—05 251 476
Interpretations of probability and prevision, finite      350—51 357—58
Interpretations of probability and prevision, frequency      16 49
Interpretations of probability and prevision, incomplete      104—05 285
Interpretations of probability and prevision, instrumentalist      360—61 698
Interpretations of probability and prevision, limiting      49 80—81 351 358 378
Interpretations of probability and prevision, minimal      20—21 61—63
Interpretations of probability and prevision, needed in inference      15 100
Interpretations of probability and prevision, objections to      109—19
Interpretations of probability and prevision, of sampling models      111 14 349 59 465—66
Interpretations of probability and prevision, relation to aleatory      17 353—54 357
Interpretations of probability and prevision, relation to epistemic      17 102 353 54 357
Interpretations of probability and prevision, versus evidential      22—24
Interpretations of probability and prevision, versus sensitivity analysis      105—08 476—77
Interpretations of structural judgements      108 446—48 456—57 460 477
Interpretations operational      15 20 102—03
Interpretations personalist      14 43
Interpretations propensity      16—17 351—55 358
Interpretations rationalistic      14—15 102
Interpretations reductionist      112—13 361 465—67
Interpretations sensitivity analysis      7 105—08 253—58
Interpretations, based on dogma of ideal precision      7 105 254
Interpretations, intersubjective      361
Interpretations, logical      14—16 43 102 267
Interpretations, subjective      15—16 103
Interpretations, updated      284—86
Interpretations, versus behavioural interpretation      107—08 477
Interval estimation      (see Confidence intervals Credible
Interval of measures      201—02
Invariance      139—45 231
Invariance, permutation      457
Invariance, shift      97—98 143—44
Invariance, translation      98—100 140 144—45 229—30
Irrelevance      444 (see also Independence)
Isaacs, H.H.      536
Jain, R.      538
Jameson, G.J.O.      506 608
Janis, I.L.      484
Jaynes, E.T.      11 23 43 228 266 267 271 486 525 526 527 528 540 541 542 590 591 592
Jech, TJ.      506
Jeffrey, R.C.      43 339 481 483 485 490 491 492 525 533 543 544 560
Jeffreyb’s rule      339
Jeffreys, H.      16 23 43 45 113 223 228 229 232 238 241 244 245 362 373 478 486 500 520 525 526 527 528 532 567 571
Jenkins, G.M.      558 646
Jepson, C.      664
Johnson, R.W.      540
Johnson, W.E.      589
Judgement      167—71 (see also Assessment Elicitation)
Judgement, ambiguous versus imprecise      263
Judgement, arbitrary      173—74 210 237 241
Judgement, classificatory      188—91
Judgement, comparative      191—97
Judgement, effect of new      177—80
Judgement, equivalence      472
Judgement, of desirability      169—70 474
Judgement, structural      472—77
Judgement, suspending      226 239
Judgement, types of      169—71 472—74
Kadane, J.B.      323 496 536 555 557 558 559 667
Kahneman, D.      488 501 536
Kanal, L.N.      490
Kaplan, M.      515 516 588
Karmarkar, N.      511
Kekes, J.      484
Kelley, J.L.      506 608 609 610
Kemeny, J.      494
Kempthorne, O.      386 483 558 559 562 569 572 573 584 585
Kent, S.      514 539
Keynes, J.M.      ix 23 34 44 45 113 238 244 486 487 489 497 515 516 522 523 526 532 585
Keynesb’s theory of probability      44—45
Kickert, W.J.M.      538 539 540
Kiefer, J.      387 570 572
Kingman, J.F.C.      590
Kmietowicz, Z.W.      48 507 536
Kneale, W.      514
Knight, F.H.      209 489 519
Knill — Jones, R.P.      50 490
Kolmogorov, A.N.      32 282 306 307 327 489 549 553 558 561
Kolmogorov’s condition      306
Kolmogorov’s theory of conditional probability      306—08
Kolmogorov’s theory of conditional probability, compared to de Finettib’s theory      282 327
Koopman, B.O.      45 515 557
Kraft, C.      515 601
Krantz, D.H.      515 664
Krein — Milman theorem      613
Kudo, H.      517 518 536
Kuhn, T.S.      478
Kullback, S.      523
Kumar, A.      49 592
Kunda, Z.      664
Kunreuther, H.      48 501 532
Kyburg, H.E.      34 44 48 238 479 480 484 486 487 488 501 529 531 536 562 563 590 591 592
Lad, F.R.      482 488 499
Lane, D.A.      555 556 566 568 573 579
Laplace, P.S. de      43 220 228 377 521 522 525 527 569
Laplaceb’s rule of succession      220
Lauritzen, S.L.      49 490
Laws of large numbers      352
Laws of large numbers for imprecise probabilities      359 564
Laws, deterministic versus statistical      352 355
Learner, E.E.      44 47 492 493 518 521 525 536 565 623
Lebesgue lower prevision      98—99 132
Lebesgue lower prevision is fully conglomerable      325
Lebesgue measure (on real line)      229—30 (see also Density function improper uniform)
Lebesgue measure (on unit interval)      98—99
Lebesgue measure (on unit interval), additive extensions      132 136—37 144—45 325—27
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå