Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Lakowicz J.R. — Principles of Fluorescence Spectroscopy
Lakowicz J.R. — Principles of Fluorescence Spectroscopy



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Principles of Fluorescence Spectroscopy

Àâòîð: Lakowicz J.R.

Àííîòàöèÿ:

In the second edition of Principles I have attempted to maintain the emphasis on basics, while updating the examples to include more recent results from the literature. There is a new chapter providing an overview of extrinisic fluorophores. The discussion of timeresolved measurements has been expanded to two chapters. Quenching has also been expanded in two chapters. Energy transfer and anisotropy have each been expanded to three chapters. There is also a new chapter on fluorescence sensing. To enhance the usefulness of this book as a textbook, most chapters are followed by a set of problems. Sections which describe advanced topics are indicated as such, to allow these sections to be skipped in an introduction course. Glossaries are provided for commonly used acronyms and mathematical symbols. For those wanting additional informtion, the final appendix contains a list of recommended books which expand on various specialized topics.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 2nd

Ãîä èçäàíèÿ: 1999

Êîëè÷åñòâî ñòðàíèö: 725

Äîáàâëåíà â êàòàëîã: 23.02.2007

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Quenching, advanced topics, probe accessibility to water—and lipid-soluble quenchers      267—270
Quenching, advanced topics, quenching efficiency      278—280
Quenching, advanced topics, transient effects      280—285
Quenching, advanced topics, transient effects, proteins, distance-dependent quenching in      285
Quenching, bimolecular quenching constant      241
Quenching, chloride probes      540
Quenching, collisional, theory of      239—242
Quenching, collisional, theory of, bimolecular quenching constant, interpretation of      241—242
Quenching, collisional, theory of, Stern — Volmer equation, derivation of      240—241
Quenching, energy transfer, $R_0$ changes from      420
Quenching, fractional accessibility      247—249
Quenching, fractional accessibility, experimental considerations      249
Quenching, fractional accessibility, Stern — Volmer plots, modified      248—249
Quenching, intramolecular      257—258
Quenching, molecular information from fluorescence      17
Quenching, proteins, anisotropy decays      360—361
Quenching, proteins, anisotropy decays, tryptophan position and      467
Quenching, proteins, applications to      249—257
Quenching, proteins, applications to, colicin $E_1$ folding      251—252
Quenching, proteins, applications to, conformational changes and tryptophan accessibility      250
Quenching, proteins, applications to, effects of quenchers on proteins      251
Quenching, proteins, applications to, endonuclease III      249—250
Quenching, proteins, applications to, multiple decay time qnenching      250—251
Quenching, quenchers      238—239
Quenching, quenching-resolved emission spectra      252—255
Quenching, quenching-resolved emission spectra, fluorophore mixtures      252—253 254
Quenching, quenching-resolved emission spectra, Tet repressor      253—255
Quenching, simulated intensity decay      99
Quenching, sphere of action      244—245
Quenching, static and dynamic, examples of      243—244
Quenching, static, theory of      242
Quenching, steric shielding and charge effects      245—247
Quenching, steric shielding and charge effects, DMA-bound probe accessibility      246—247
Quenching, steric shielding and charge effects, ethenoadenine derivatives      247
Quenching, Stern — -Vblmer equation, deviations from      244—245 248—249
Quenching, tryptophan fluorescence, by phenylalanine      503—504
Quin-2      165 557 558 559
Quinidine      4
Quinine      2
Quinine sulfate      52 637 638 639 640 641 642
Quinine, chloride sensors      539
Quinine, energy transfer      374
Quinine, quantum yield standards      53
Quinolinium      238
Quinones      238 538
R6G laser      105 106
Radiation boundafy condition (RBC) model      280—284
Radiationless energy transfer effects      302
Radiative decay rate      453
Radio-frequency amplifiers, frequency-domain lifetime measurements      150
Radiometric probes, MLCs      587—588 589
Raman scatter      39—40 41 249
Ravin adenine dinuckotide      see “FAD”
Ravine mononucleotide      15
Raylcigh scatter      40 41 249
Reactive Blue 4      586 587 588
Red and near-IR dyes      74—75
Red shift, solvent effects      449—450
Red-edge excitation shifts      231—233
Refractive index      53 187 188
Relaxation      12
Relaxation dynamics      212—233
Relaxation dynamics, continuous and two-state spectral relaxation      212—213
Relaxation dynamics, continuous versus two-state      226—230
Relaxation dynamics, continuous versus two-state, experimental distinction      227
Relaxation dynamics, continuous versus two-state, phase modulation studies of solvent relaxation      227—229
Relaxation dynamics, continuous versus two-state, solvent relaxation versus rotational isomer formation      229—230
Relaxation dynamics, hfetime-resolved emission spectra      222—224
Relaxation dynamics, perspectives of solvent dynamics      233
Relaxation dynamics, picosecond relaxation in solvents      224—226
Relaxation dynamics, picosecond relaxation in solvents, multiexponential relaxation in water      225—226
Relaxation dynamics, picosecond relaxation in solvents, theory of time-dependent solvent relaxation      224—225
Relaxation dynamics, red-edge excitation shifts      231—233
Relaxation dynamics, time-resolved emission spectra (TRES) measurement      213—215
Relaxation dynamics, time-resolved emission spectra (TRES) measurement, direct recording      213
Relaxation dynamics, time-resolved emission spectra (TRES) measurement, from wavelength-dependent decays      213—215
Relaxation dynamics, time-resolved emission spectra (TRES), biochemical examples      215—222
Relaxation dynamics, time-resolved emission spectra (TRES), biochemical examples, analysis      218—220
Relaxation dynamics, time-resolved emission spectra (TRES), biochemical examples, apomyoglobin      215—217
Relaxation dynamics, time-resolved emission spectra (TRES), biochemical examples, labeled membranes      217—218 219
Relaxation dynamics, time-resolved emission spectra (TRES), biochemical examples, proteins, spectral relaxation in      220—222
Relaxation dynamics, TRES versus DAS      230—231
Resonance energy transfer (RET)      11 367 409 515
Resonance energy transfer (RET) and diffusive motions in biopolymers      416
Resonance energy transfer (RET), applications      420—421
Resonance energy transfer (RET), molecular information from fluorescence      19
Resonance energy transfer (RET), principles      13—14
Resorufin      548
Restricted geometries, energy transfer      434—435
Restriction fragments      604
RET      see “Resonance energy transfer”
Retinal      438—439
Reversible two-state model      518—519
Reversible two-state model, steady-state fluorescence of      518
Reversible two-state model, time-resolved decays for      518—519
Rhenium MLCs      578 584 585 590
Rhodamine      2
Rhodamine 6G dye laser      480
Rhodamine 800      76
Rhodamine B.      3 16 50 51
Rhodamine derivatives      74
Rhodamine derivatives, Forster distances      388
Rhodamine derivatives, structures of      70—72
Rhodamine, anisotropy decay      364
Rhodamine, DMA energy transfer reactions      381
Rhodamine, DNA technology      608
Rhodamine, glucose sensor      543
Rhodamine, quantum yield standards      52
Rhodopsin disk membranes, retinal in      438—439
Rhod—2      553
Ribonuclease $T_1$      453 462 493—496
Ribonuclease $T_1$, anisotropy decays, FD      498
Ribonuclease $T_1$, spectral relaxation      221 —222
Ribonuclease A      416
Ribose binding protein (RBP)      474—475
Rigid rotor      334—336
Rigid versus flexible hexapeptide, distance distributions      397—399
Rihozyme substrate binding      256—257
ro      see “Forster distance”
Room-temperature phosphorescence of proteins      509
Rose Bengal      646 648 649
Rotamers (rotational isomers)      229—230 445 488—489
Rotational correction times, ellipsoids      253—255
Rotational correlation time      98—99 100 304
Rotational diffusion      12—13 151—152
Rotational diffusion, amsotropy decay, ellipsoids, theory      354
Rotational diffusion, amsotropy decay, frequency-domain studies of      355—357 358
Rotational diffusion, amsotropy decay, nonspherical molecules      347—348
Rotational diffusion, amsotropy decay, stick versus slip rotational diffusion      353
Rotational diffusion, amsotropy decay, time-domain studies of      354—355
Rotational diffusion, membranes, hindered      331 —333
Rotational diffusion, oxytocin      336—337
Rotational diffusion, Perrin equation      303—306
Rotational diffusion, Perrin equation, examples of Perrin plots      306
Rotational diffusion, Perrin equation, rotational motions of proteins      304—306
Rotational isomer formation      229—230 445 488—489
Rotational motion, measurement of      98
Rotational motion, transition metal-ligand complexes      416
Rotors, hindered      329
Rotors, rigid      334—336
Row cytometry      85
Row cytometry, DNA fragment siring by      607
Row cytometry, literature references      655—656
ROX      599 600
Ruthenium MLCs      34 87 88
Ruthenium MLCs, amsotropy properties      338 575—576
Ruthenium MLCs, blood gas measurement      546
Ruthenium MLCs, electronic states      573—575
Ruthenium MLCs, frequency-domain lifetime measurements      175
Ruthenium MLCs, oxygen sensors      536—538
Ruthenium MLCs, pH probes      548
Sample geometry effects      53—55
Sample preparation, common errors in      55—56
SBFI (sodium-binding benzofuran isophthalate)      555 556
Scattered light effect, frequency-domain lifetime measurements      154—155
Scattering, qtieaching considerations      249
Second-order transmission, monochromator      35
Segmental mobility, biopolymer-bound fluoropbore      329—330
Segmental mobility, DNA      340 341
Seminaphthofluoresceins (SNAFLS)      548 549—551
Seminaphthorhodofluors (SNARFS)      548 549—551
Sensing and sensors      79 531—565
Sensing and sensors by coltisional quenching      536—541
Sensing and sensors by coltisional quenching, chloride      539—541
Sensing and sensors by coltisional quenching, miscellaneous      541
Sensing and sensors by coltisional quenching, oxygen      536—538 539
Sensing and sensors, analyte recognition probes      552—560
Sensing and sensors, analyte recognition probes, calcium and magnesium      556—559 565
Sensing and sensors, analyte recognition probes, cardiac markers      564
Sensing and sensors, analyte recognition probes, cation probe specificity      552—553
Sensing and sensors, analyte recognition probes, chloride      539
Sensing and sensors, analyte recognition probes, glucose      559—560
Sensing and sensors, analyte recognition probes, sodium and potassium      554—556
Sensing and sensors, analyte recognition probes, theory of      553—554
Sensing and sensors, clinical chemistry      531—532
Sensing and sensors, energy-transfer      541—545
Sensing and sensors, glucose      542—543
Sensing and sensors, glucose, ion      543—544 545
Sensing and sensors, glucose, pH and $\mathrm{pCO_2}$      541—542
Sensing and sensors, glucose, theory for      545
Sensing and sensors, immunoassays      560—565
Sensing and sensors, immunoassays, ELISA      560
Sensing and sensors, immunoassays, energy-transfer      562—563
Sensing and sensors, immunoassays, fluorescence polarization      563—565
Sensing and sensors, immunoassays, time-resolved      560—562
Sensing and sensors, lanthanide      560
Sensing and sensors, literature references      656
Sensing and sensors, mechanisms of sensing      535—536
Sensing and sensors, metal-hgand complexes      see “Metal-ligand complexes”
Sensing and sensors, molecular information from fluorescence      19—21
Sensing and sensors, pH, two-stale sensors      545—551
Sensing and sensors, pH, two-stale sensors, blood gases, optical detection of      545—546
Sensing and sensors, pH, two-stale sensors, pH sensors      546—551
Sensing and sensors, phosphorescence      538
Sensing and sensors, photoinduced electron-transfer (PET) probes for metal ions and anions      551—552
Sensing and sensors, probes      78 79
Sensing and sensors, proteins as sensors      88—89
Sensing and sensors, spectral observables for      532—535
Sensing and sensors, spectral observables for, lifetime-based sensing      534—535
Sensing and sensors, spectral observables for, optical properties of tissues      534
Serotonin      480
Serum albumin      13 71—72 75 255 256 462 503—504
Serum albumin, anisotropy decay      362—363
Serum albumin, intensity decay of      493
Serum albumin, rotational correlation time      304
Silicone, oxygen sensor support materials      536 537 538
Silver      238 239
Simulated intensity decay      99
Single-channel anisotropy measurement method      298—299 300
Single-exponential decay      619—620
Single-exponential decay law      282
Single-exponential decay, spherical molecules      304
Single-exponential decay, time-dependent intensity      179
Single-exponential fit, FD intensity decay approximation      396 397
Single-particle detection      85
Single-pboton excitation, green fluorescent protein      166
Single-photon counting      100 (see also “Time-correlated aingle-photon counting”)
Site-directed mutagenesis, azurins      454—455 (see also “Genetically engineered proteins”)
Skeletal muscle troponin C      407—409
Skeletal protein 4.1      386
Smoluchowski model      241 280—281 282 284
SNAFL      174 548 549—551
SNARF      548 549—551
Sodium analyte recognition probes      554—556
Sodium Green      555 556
Sodium metibisulfite      249
Sodium probes      16 78 543 544 552 554—556
Sodium-binding benzofuran isophthalate (SBFI)      554
Soleil — Babinet compensator      149
Soleillet’s rule, depolarization factor multiplication      311—312
Solvent effects on emission spectra      185—208 233 452 501
Solvent effects on emission spectra, biochemical examples with Prodan      201—202
Solvent effects on emission spectra, biochemical examples with solvent-sensitive probes      202—205
Solvent effects on emission spectra, biochemical examples, calmodulin, hydrophobic surface exposure      202—203
Solvent effects on emission spectra, biochemical examples, cyclodextrin binding using dansyl probe      203
Solvent effects on emission spectra, biochemical examples, membrane binding site polarity      203—205
Solvent effects on emission spectra, development of advances solvent-sensitive probes      205—206
Solvent effects on emission spectra, Lippert equation      187—194
Solvent effects on emission spectra, Lippert equation, application of      191—193
Solvent effects on emission spectra, Lippert equation, derivation of      187—191
Solvent effects on emission spectra, Lippert equation, polarity scales      193—194
Solvent effects on emission spectra, Lippert plots, specific solvent effects      196—198
Solvent effects on emission spectra, mixtures, effects of      206—208
Solvent effects on emission spectra, overview      185—187
Solvent effects on emission spectra, polarity surrounding membrane-bound fluorophore      186
Solvent effects on emission spectra, Prodan, fatty acid binding proteins      202
Solvent effects on emission spectra, Prodan, LE and 1CT states      200—201
Solvent effects on emission spectra, Prodan, phase transition in membranes      201—202
Solvent effects on emission spectra, Prodan, protein association      202
Solvent effects on emission spectra, specific      194—198
Solvent effects on emission spectra, spectral shift mechanisms      186—187
Solvent effects on emission spectra, summary of      208
Solvent effects on emission spectra, temperature effects      198—201
Solvent relaxation      12 (see also “Solvent effects on emission spectra” “Relaxation
Solvent relaxation, excited-state reactions      515
Solvent relaxation, versus rotational isomer formation      229—230
Solvent-sensitive probes      71 202—205
SPA (N-sulfopropylacridiruum)      539—541
Species-associated spectra (SAS)      519 527
Spectral karyotyping      614
Spectral observables, sensors      532—535
Spectral overlap, two-state model      519
Spectral properties, metal-hgand complexes      576—578
Spectral relaxation      498—499 (see also “Relaxation dynamics”)
Spectral response, PMTs      42—43
Spectral shift mechanisms, solvent effects on emission spectra      186—187
Spectrofluorometer      26
Spectrofluorometer, ideal      28—32
Spectroscopy, general principles      see “Principles of fluorescence”
Spectroscopy, literature references      654
Sperm whale myoglobin      493
Sphere of action      244—245
Spin labeled naphthalene derivative      257
Spin-labeled PC      273
Spin-orbit coupling, quenching      239
SPQ [6-methoxy-N-(3-sulfopropyl)quinolinium], chloride sensors      539 540 541
SPQ [6-methoxy-N-(3-sulfopropyl)quinolinium], quenching      165 238
Stains, DNA      604—607
Stains, DNA, Bis DNA stains      605—606
Stains, DNA, energy-transfer stains      606—607
Stains, DNA, fragment sizing by flow cytometry      607
Standard lamp, correction factors obtained with      51—52
Standards, $\beta$-carbotine derivatives      637—638
Standards, corrected emission spectra      51
Standards, emission spectra correction      51
Standards, lifetime      645—649
Standards, long-wavelength      639 640 641 642
Standards, quantum yield      52—53
Standards, ultraviolet      639 642
Staphylococcal nuclease      163 221 282 283 453 462 473—474
Staphylococcal nuclease, anisotropy decay of      496
Staphylococcal nuclease, emission center of gravity      499
Staphylococcal nuclease, intensity decay of      493
Staphylococcal nuclease, phosphorescence      509
Staphylococcus aureus metalloprotease      464—465
Static quenching      240 (see also “Quenching”)
Static quenching, combined with dynamic quenching      243
Static quenching, examples of      243—244
Static quenching, theory of      242
Steady-state amsotropy, calculation of      304
1 2 3 4 5 6 7 8 9 10
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå