|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Lakowicz J.R. — Principles of Fluorescence Spectroscopy |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Quenching, advanced topics, probe accessibility to water—and lipid-soluble quenchers 267—270
Quenching, advanced topics, quenching efficiency 278—280
Quenching, advanced topics, transient effects 280—285
Quenching, advanced topics, transient effects, proteins, distance-dependent quenching in 285
Quenching, bimolecular quenching constant 241
Quenching, chloride probes 540
Quenching, collisional, theory of 239—242
Quenching, collisional, theory of, bimolecular quenching constant, interpretation of 241—242
Quenching, collisional, theory of, Stern — Volmer equation, derivation of 240—241
Quenching, energy transfer, changes from 420
Quenching, fractional accessibility 247—249
Quenching, fractional accessibility, experimental considerations 249
Quenching, fractional accessibility, Stern — Volmer plots, modified 248—249
Quenching, intramolecular 257—258
Quenching, molecular information from fluorescence 17
Quenching, proteins, anisotropy decays 360—361
Quenching, proteins, anisotropy decays, tryptophan position and 467
Quenching, proteins, applications to 249—257
Quenching, proteins, applications to, colicin folding 251—252
Quenching, proteins, applications to, conformational changes and tryptophan accessibility 250
Quenching, proteins, applications to, effects of quenchers on proteins 251
Quenching, proteins, applications to, endonuclease III 249—250
Quenching, proteins, applications to, multiple decay time qnenching 250—251
Quenching, quenchers 238—239
Quenching, quenching-resolved emission spectra 252—255
Quenching, quenching-resolved emission spectra, fluorophore mixtures 252—253 254
Quenching, quenching-resolved emission spectra, Tet repressor 253—255
Quenching, simulated intensity decay 99
Quenching, sphere of action 244—245
Quenching, static and dynamic, examples of 243—244
Quenching, static, theory of 242
Quenching, steric shielding and charge effects 245—247
Quenching, steric shielding and charge effects, DMA-bound probe accessibility 246—247
Quenching, steric shielding and charge effects, ethenoadenine derivatives 247
Quenching, Stern — -Vblmer equation, deviations from 244—245 248—249
Quenching, tryptophan fluorescence, by phenylalanine 503—504
Quin-2 165 557 558 559
Quinidine 4
Quinine 2
Quinine sulfate 52 637 638 639 640 641 642
Quinine, chloride sensors 539
Quinine, energy transfer 374
Quinine, quantum yield standards 53
Quinolinium 238
Quinones 238 538
R6G laser 105 106
Radiation boundafy condition (RBC) model 280—284
Radiationless energy transfer effects 302
Radiative decay rate 453
Radio-frequency amplifiers, frequency-domain lifetime measurements 150
Radiometric probes, MLCs 587—588 589
Raman scatter 39—40 41 249
Ravin adenine dinuckotide see “FAD”
Ravine mononucleotide 15
Raylcigh scatter 40 41 249
Reactive Blue 4 586 587 588
Red and near-IR dyes 74—75
Red shift, solvent effects 449—450
Red-edge excitation shifts 231—233
Refractive index 53 187 188
Relaxation 12
Relaxation dynamics 212—233
Relaxation dynamics, continuous and two-state spectral relaxation 212—213
Relaxation dynamics, continuous versus two-state 226—230
Relaxation dynamics, continuous versus two-state, experimental distinction 227
Relaxation dynamics, continuous versus two-state, phase modulation studies of solvent relaxation 227—229
Relaxation dynamics, continuous versus two-state, solvent relaxation versus rotational isomer formation 229—230
Relaxation dynamics, hfetime-resolved emission spectra 222—224
Relaxation dynamics, perspectives of solvent dynamics 233
Relaxation dynamics, picosecond relaxation in solvents 224—226
Relaxation dynamics, picosecond relaxation in solvents, multiexponential relaxation in water 225—226
Relaxation dynamics, picosecond relaxation in solvents, theory of time-dependent solvent relaxation 224—225
Relaxation dynamics, red-edge excitation shifts 231—233
Relaxation dynamics, time-resolved emission spectra (TRES) measurement 213—215
Relaxation dynamics, time-resolved emission spectra (TRES) measurement, direct recording 213
Relaxation dynamics, time-resolved emission spectra (TRES) measurement, from wavelength-dependent decays 213—215
Relaxation dynamics, time-resolved emission spectra (TRES), biochemical examples 215—222
Relaxation dynamics, time-resolved emission spectra (TRES), biochemical examples, analysis 218—220
Relaxation dynamics, time-resolved emission spectra (TRES), biochemical examples, apomyoglobin 215—217
Relaxation dynamics, time-resolved emission spectra (TRES), biochemical examples, labeled membranes 217—218 219
Relaxation dynamics, time-resolved emission spectra (TRES), biochemical examples, proteins, spectral relaxation in 220—222
Relaxation dynamics, TRES versus DAS 230—231
Resonance energy transfer (RET) 11 367 409 515
Resonance energy transfer (RET) and diffusive motions in biopolymers 416
Resonance energy transfer (RET), applications 420—421
Resonance energy transfer (RET), molecular information from fluorescence 19
Resonance energy transfer (RET), principles 13—14
Resorufin 548
Restricted geometries, energy transfer 434—435
Restriction fragments 604
RET see “Resonance energy transfer”
Retinal 438—439
Reversible two-state model 518—519
Reversible two-state model, steady-state fluorescence of 518
Reversible two-state model, time-resolved decays for 518—519
Rhenium MLCs 578 584 585 590
Rhodamine 2
Rhodamine 6G dye laser 480
Rhodamine 800 76
Rhodamine B. 3 16 50 51
Rhodamine derivatives 74
Rhodamine derivatives, Forster distances 388
Rhodamine derivatives, structures of 70—72
Rhodamine, anisotropy decay 364
Rhodamine, DMA energy transfer reactions 381
Rhodamine, DNA technology 608
Rhodamine, glucose sensor 543
Rhodamine, quantum yield standards 52
Rhodopsin disk membranes, retinal in 438—439
Rhod—2 553
Ribonuclease 453 462 493—496
Ribonuclease , anisotropy decays, FD 498
Ribonuclease , spectral relaxation 221 —222
Ribonuclease A 416
Ribose binding protein (RBP) 474—475
Rigid rotor 334—336
Rigid versus flexible hexapeptide, distance distributions 397—399
Rihozyme substrate binding 256—257
ro see “Forster distance”
Room-temperature phosphorescence of proteins 509
Rose Bengal 646 648 649
Rotamers (rotational isomers) 229—230 445 488—489
Rotational correction times, ellipsoids 253—255
Rotational correlation time 98—99 100 304
Rotational diffusion 12—13 151—152
Rotational diffusion, amsotropy decay, ellipsoids, theory 354
Rotational diffusion, amsotropy decay, frequency-domain studies of 355—357 358
Rotational diffusion, amsotropy decay, nonspherical molecules 347—348
Rotational diffusion, amsotropy decay, stick versus slip rotational diffusion 353
Rotational diffusion, amsotropy decay, time-domain studies of 354—355
Rotational diffusion, membranes, hindered 331 —333
Rotational diffusion, oxytocin 336—337
Rotational diffusion, Perrin equation 303—306
Rotational diffusion, Perrin equation, examples of Perrin plots 306
Rotational diffusion, Perrin equation, rotational motions of proteins 304—306
Rotational isomer formation 229—230 445 488—489
Rotational motion, measurement of 98
Rotational motion, transition metal-ligand complexes 416
Rotors, hindered 329
Rotors, rigid 334—336
Row cytometry 85
Row cytometry, DNA fragment siring by 607
Row cytometry, literature references 655—656
ROX 599 600
Ruthenium MLCs 34 87 88
Ruthenium MLCs, amsotropy properties 338 575—576
Ruthenium MLCs, blood gas measurement 546
Ruthenium MLCs, electronic states 573—575
Ruthenium MLCs, frequency-domain lifetime measurements 175
Ruthenium MLCs, oxygen sensors 536—538
| Ruthenium MLCs, pH probes 548
Sample geometry effects 53—55
Sample preparation, common errors in 55—56
SBFI (sodium-binding benzofuran isophthalate) 555 556
Scattered light effect, frequency-domain lifetime measurements 154—155
Scattering, qtieaching considerations 249
Second-order transmission, monochromator 35
Segmental mobility, biopolymer-bound fluoropbore 329—330
Segmental mobility, DNA 340 341
Seminaphthofluoresceins (SNAFLS) 548 549—551
Seminaphthorhodofluors (SNARFS) 548 549—551
Sensing and sensors 79 531—565
Sensing and sensors by coltisional quenching 536—541
Sensing and sensors by coltisional quenching, chloride 539—541
Sensing and sensors by coltisional quenching, miscellaneous 541
Sensing and sensors by coltisional quenching, oxygen 536—538 539
Sensing and sensors, analyte recognition probes 552—560
Sensing and sensors, analyte recognition probes, calcium and magnesium 556—559 565
Sensing and sensors, analyte recognition probes, cardiac markers 564
Sensing and sensors, analyte recognition probes, cation probe specificity 552—553
Sensing and sensors, analyte recognition probes, chloride 539
Sensing and sensors, analyte recognition probes, glucose 559—560
Sensing and sensors, analyte recognition probes, sodium and potassium 554—556
Sensing and sensors, analyte recognition probes, theory of 553—554
Sensing and sensors, clinical chemistry 531—532
Sensing and sensors, energy-transfer 541—545
Sensing and sensors, glucose 542—543
Sensing and sensors, glucose, ion 543—544 545
Sensing and sensors, glucose, pH and 541—542
Sensing and sensors, glucose, theory for 545
Sensing and sensors, immunoassays 560—565
Sensing and sensors, immunoassays, ELISA 560
Sensing and sensors, immunoassays, energy-transfer 562—563
Sensing and sensors, immunoassays, fluorescence polarization 563—565
Sensing and sensors, immunoassays, time-resolved 560—562
Sensing and sensors, lanthanide 560
Sensing and sensors, literature references 656
Sensing and sensors, mechanisms of sensing 535—536
Sensing and sensors, metal-hgand complexes see “Metal-ligand complexes”
Sensing and sensors, molecular information from fluorescence 19—21
Sensing and sensors, pH, two-stale sensors 545—551
Sensing and sensors, pH, two-stale sensors, blood gases, optical detection of 545—546
Sensing and sensors, pH, two-stale sensors, pH sensors 546—551
Sensing and sensors, phosphorescence 538
Sensing and sensors, photoinduced electron-transfer (PET) probes for metal ions and anions 551—552
Sensing and sensors, probes 78 79
Sensing and sensors, proteins as sensors 88—89
Sensing and sensors, spectral observables for 532—535
Sensing and sensors, spectral observables for, lifetime-based sensing 534—535
Sensing and sensors, spectral observables for, optical properties of tissues 534
Serotonin 480
Serum albumin 13 71—72 75 255 256 462 503—504
Serum albumin, anisotropy decay 362—363
Serum albumin, intensity decay of 493
Serum albumin, rotational correlation time 304
Silicone, oxygen sensor support materials 536 537 538
Silver 238 239
Simulated intensity decay 99
Single-channel anisotropy measurement method 298—299 300
Single-exponential decay 619—620
Single-exponential decay law 282
Single-exponential decay, spherical molecules 304
Single-exponential decay, time-dependent intensity 179
Single-exponential fit, FD intensity decay approximation 396 397
Single-particle detection 85
Single-pboton excitation, green fluorescent protein 166
Single-photon counting 100 (see also “Time-correlated aingle-photon counting”)
Site-directed mutagenesis, azurins 454—455 (see also “Genetically engineered proteins”)
Skeletal muscle troponin C 407—409
Skeletal protein 4.1 386
Smoluchowski model 241 280—281 282 284
SNAFL 174 548 549—551
SNARF 548 549—551
Sodium analyte recognition probes 554—556
Sodium Green 555 556
Sodium metibisulfite 249
Sodium probes 16 78 543 544 552 554—556
Sodium-binding benzofuran isophthalate (SBFI) 554
Soleil — Babinet compensator 149
Soleillet’s rule, depolarization factor multiplication 311—312
Solvent effects on emission spectra 185—208 233 452 501
Solvent effects on emission spectra, biochemical examples with Prodan 201—202
Solvent effects on emission spectra, biochemical examples with solvent-sensitive probes 202—205
Solvent effects on emission spectra, biochemical examples, calmodulin, hydrophobic surface exposure 202—203
Solvent effects on emission spectra, biochemical examples, cyclodextrin binding using dansyl probe 203
Solvent effects on emission spectra, biochemical examples, membrane binding site polarity 203—205
Solvent effects on emission spectra, development of advances solvent-sensitive probes 205—206
Solvent effects on emission spectra, Lippert equation 187—194
Solvent effects on emission spectra, Lippert equation, application of 191—193
Solvent effects on emission spectra, Lippert equation, derivation of 187—191
Solvent effects on emission spectra, Lippert equation, polarity scales 193—194
Solvent effects on emission spectra, Lippert plots, specific solvent effects 196—198
Solvent effects on emission spectra, mixtures, effects of 206—208
Solvent effects on emission spectra, overview 185—187
Solvent effects on emission spectra, polarity surrounding membrane-bound fluorophore 186
Solvent effects on emission spectra, Prodan, fatty acid binding proteins 202
Solvent effects on emission spectra, Prodan, LE and 1CT states 200—201
Solvent effects on emission spectra, Prodan, phase transition in membranes 201—202
Solvent effects on emission spectra, Prodan, protein association 202
Solvent effects on emission spectra, specific 194—198
Solvent effects on emission spectra, spectral shift mechanisms 186—187
Solvent effects on emission spectra, summary of 208
Solvent effects on emission spectra, temperature effects 198—201
Solvent relaxation 12 (see also “Solvent effects on emission spectra” “Relaxation
Solvent relaxation, excited-state reactions 515
Solvent relaxation, versus rotational isomer formation 229—230
Solvent-sensitive probes 71 202—205
SPA (N-sulfopropylacridiruum) 539—541
Species-associated spectra (SAS) 519 527
Spectral karyotyping 614
Spectral observables, sensors 532—535
Spectral overlap, two-state model 519
Spectral properties, metal-hgand complexes 576—578
Spectral relaxation 498—499 (see also “Relaxation dynamics”)
Spectral response, PMTs 42—43
Spectral shift mechanisms, solvent effects on emission spectra 186—187
Spectrofluorometer 26
Spectrofluorometer, ideal 28—32
Spectroscopy, general principles see “Principles of fluorescence”
Spectroscopy, literature references 654
Sperm whale myoglobin 493
Sphere of action 244—245
Spin labeled naphthalene derivative 257
Spin-labeled PC 273
Spin-orbit coupling, quenching 239
SPQ [6-methoxy-N-(3-sulfopropyl)quinolinium], chloride sensors 539 540 541
SPQ [6-methoxy-N-(3-sulfopropyl)quinolinium], quenching 165 238
Stains, DNA 604—607
Stains, DNA, Bis DNA stains 605—606
Stains, DNA, energy-transfer stains 606—607
Stains, DNA, fragment sizing by flow cytometry 607
Standard lamp, correction factors obtained with 51—52
Standards, -carbotine derivatives 637—638
Standards, corrected emission spectra 51
Standards, emission spectra correction 51
Standards, lifetime 645—649
Standards, long-wavelength 639 640 641 642
Standards, quantum yield 52—53
Standards, ultraviolet 639 642
Staphylococcal nuclease 163 221 282 283 453 462 473—474
Staphylococcal nuclease, anisotropy decay of 496
Staphylococcal nuclease, emission center of gravity 499
Staphylococcal nuclease, intensity decay of 493
Staphylococcal nuclease, phosphorescence 509
Staphylococcus aureus metalloprotease 464—465
Static quenching 240 (see also “Quenching”)
Static quenching, combined with dynamic quenching 243
Static quenching, examples of 243—244
Static quenching, theory of 242
Steady-state amsotropy, calculation of 304
|
|
|
Ðåêëàìà |
|
|
|