| 
		        
			        |  |  
			        |  |  
					| Àâòîðèçàöèÿ |  
					|  |  
			        |  |  
			        | Ïîèñê ïî óêàçàòåëÿì |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Lakowicz J.R. — Principles of Fluorescence Spectroscopy |  
                    |  |  
			        |  |  
                    | Ïðåäìåòíûé óêàçàòåëü |  
                    | | Quenching, advanced topics, probe accessibility to water—and lipid-soluble quenchers      267—270 Quenching, advanced topics, quenching efficiency      278—280
 Quenching, advanced topics, transient effects      280—285
 Quenching, advanced topics, transient effects, proteins, distance-dependent quenching in      285
 Quenching, bimolecular quenching constant      241
 Quenching, chloride probes      540
 Quenching, collisional, theory of      239—242
 Quenching, collisional, theory of, bimolecular quenching constant, interpretation of      241—242
 Quenching, collisional, theory of, Stern — Volmer equation, derivation of      240—241
 Quenching, energy transfer,
  changes from      420 Quenching, fractional accessibility      247—249
 Quenching, fractional accessibility, experimental considerations      249
 Quenching, fractional accessibility, Stern — Volmer plots, modified      248—249
 Quenching, intramolecular      257—258
 Quenching, molecular information from fluorescence      17
 Quenching, proteins, anisotropy decays      360—361
 Quenching, proteins, anisotropy decays, tryptophan position and      467
 Quenching, proteins, applications to      249—257
 Quenching, proteins, applications to, colicin
  folding      251—252 Quenching, proteins, applications to, conformational changes and tryptophan accessibility      250
 Quenching, proteins, applications to, effects of quenchers on proteins      251
 Quenching, proteins, applications to, endonuclease III      249—250
 Quenching, proteins, applications to, multiple decay time qnenching      250—251
 Quenching, quenchers      238—239
 Quenching, quenching-resolved emission spectra      252—255
 Quenching, quenching-resolved emission spectra, fluorophore mixtures      252—253 254
 Quenching, quenching-resolved emission spectra, Tet repressor      253—255
 Quenching, simulated intensity decay      99
 Quenching, sphere of action      244—245
 Quenching, static and dynamic, examples of      243—244
 Quenching, static, theory of      242
 Quenching, steric shielding and charge effects      245—247
 Quenching, steric shielding and charge effects, DMA-bound probe accessibility      246—247
 Quenching, steric shielding and charge effects, ethenoadenine derivatives      247
 Quenching, Stern — -Vblmer equation, deviations from      244—245 248—249
 Quenching, tryptophan fluorescence, by phenylalanine      503—504
 Quin-2      165 557 558 559
 Quinidine      4
 Quinine      2
 Quinine sulfate      52 637 638 639 640 641 642
 Quinine, chloride sensors      539
 Quinine, energy transfer      374
 Quinine, quantum yield standards      53
 Quinolinium      238
 Quinones      238 538
 R6G laser      105 106
 Radiation boundafy condition (RBC) model      280—284
 Radiationless energy transfer effects      302
 Radiative decay rate      453
 Radio-frequency amplifiers, frequency-domain lifetime measurements      150
 Radiometric probes, MLCs      587—588 589
 Raman scatter      39—40 41 249
 Ravin adenine dinuckotide      see “FAD”
 Ravine mononucleotide      15
 Raylcigh scatter      40 41 249
 Reactive Blue 4      586 587 588
 Red and near-IR dyes      74—75
 Red shift, solvent effects      449—450
 Red-edge excitation shifts      231—233
 Refractive index      53 187 188
 Relaxation      12
 Relaxation dynamics      212—233
 Relaxation dynamics, continuous and two-state spectral relaxation      212—213
 Relaxation dynamics, continuous versus two-state      226—230
 Relaxation dynamics, continuous versus two-state, experimental distinction      227
 Relaxation dynamics, continuous versus two-state, phase modulation studies of solvent relaxation      227—229
 Relaxation dynamics, continuous versus two-state, solvent relaxation versus rotational isomer formation      229—230
 Relaxation dynamics, hfetime-resolved emission spectra      222—224
 Relaxation dynamics, perspectives of solvent dynamics      233
 Relaxation dynamics, picosecond relaxation in solvents      224—226
 Relaxation dynamics, picosecond relaxation in solvents, multiexponential relaxation in water      225—226
 Relaxation dynamics, picosecond relaxation in solvents, theory of time-dependent solvent relaxation      224—225
 Relaxation dynamics, red-edge excitation shifts      231—233
 Relaxation dynamics, time-resolved emission spectra (TRES) measurement      213—215
 Relaxation dynamics, time-resolved emission spectra (TRES) measurement, direct recording      213
 Relaxation dynamics, time-resolved emission spectra (TRES) measurement, from wavelength-dependent decays      213—215
 Relaxation dynamics, time-resolved emission spectra (TRES), biochemical examples      215—222
 Relaxation dynamics, time-resolved emission spectra (TRES), biochemical examples, analysis      218—220
 Relaxation dynamics, time-resolved emission spectra (TRES), biochemical examples, apomyoglobin      215—217
 Relaxation dynamics, time-resolved emission spectra (TRES), biochemical examples, labeled membranes      217—218 219
 Relaxation dynamics, time-resolved emission spectra (TRES), biochemical examples, proteins, spectral relaxation in      220—222
 Relaxation dynamics, TRES versus DAS      230—231
 Resonance energy transfer (RET)      11 367 409 515
 Resonance energy transfer (RET) and diffusive motions in biopolymers      416
 Resonance energy transfer (RET), applications      420—421
 Resonance energy transfer (RET), molecular information from fluorescence      19
 Resonance energy transfer (RET), principles      13—14
 Resorufin      548
 Restricted geometries, energy transfer      434—435
 Restriction fragments      604
 RET      see “Resonance energy transfer”
 Retinal      438—439
 Reversible two-state model      518—519
 Reversible two-state model, steady-state fluorescence of      518
 Reversible two-state model, time-resolved decays for      518—519
 Rhenium MLCs      578 584 585 590
 Rhodamine      2
 Rhodamine 6G dye laser      480
 Rhodamine 800      76
 Rhodamine B.      3 16 50 51
 Rhodamine derivatives      74
 Rhodamine derivatives, Forster distances      388
 Rhodamine derivatives, structures of      70—72
 Rhodamine, anisotropy decay      364
 Rhodamine, DMA energy transfer reactions      381
 Rhodamine, DNA technology      608
 Rhodamine, glucose sensor      543
 Rhodamine, quantum yield standards      52
 Rhodopsin disk membranes, retinal in      438—439
 Rhod—2      553
 Ribonuclease
  453 462 493—496 Ribonuclease
  , anisotropy decays, FD      498 Ribonuclease
  , spectral relaxation      221 —222 Ribonuclease A      416
 Ribose binding protein (RBP)      474—475
 Rigid rotor      334—336
 Rigid versus flexible hexapeptide, distance distributions      397—399
 Rihozyme substrate binding      256—257
 ro      see “Forster distance”
 Room-temperature phosphorescence of proteins      509
 Rose Bengal      646 648 649
 Rotamers (rotational isomers)      229—230 445 488—489
 Rotational correction times, ellipsoids      253—255
 Rotational correlation time      98—99 100 304
 Rotational diffusion      12—13 151—152
 Rotational diffusion, amsotropy decay, ellipsoids, theory      354
 Rotational diffusion, amsotropy decay, frequency-domain studies of      355—357 358
 Rotational diffusion, amsotropy decay, nonspherical molecules      347—348
 Rotational diffusion, amsotropy decay, stick versus slip rotational diffusion      353
 Rotational diffusion, amsotropy decay, time-domain studies of      354—355
 Rotational diffusion, membranes, hindered      331 —333
 Rotational diffusion, oxytocin      336—337
 Rotational diffusion, Perrin equation      303—306
 Rotational diffusion, Perrin equation, examples of Perrin plots      306
 Rotational diffusion, Perrin equation, rotational motions of proteins      304—306
 Rotational isomer formation      229—230 445 488—489
 Rotational motion, measurement of      98
 Rotational motion, transition metal-ligand complexes      416
 Rotors, hindered      329
 Rotors, rigid      334—336
 Row cytometry      85
 Row cytometry, DNA fragment siring by      607
 Row cytometry, literature references      655—656
 ROX      599 600
 Ruthenium MLCs      34 87 88
 Ruthenium MLCs, amsotropy properties      338 575—576
 Ruthenium MLCs, blood gas measurement      546
 Ruthenium MLCs, electronic states      573—575
 Ruthenium MLCs, frequency-domain lifetime measurements      175
 Ruthenium MLCs, oxygen sensors      536—538
 
 | Ruthenium MLCs, pH probes      548 Sample geometry effects      53—55
 Sample preparation, common errors in      55—56
 SBFI (sodium-binding benzofuran isophthalate)      555 556
 Scattered light effect, frequency-domain lifetime measurements      154—155
 Scattering, qtieaching considerations      249
 Second-order transmission, monochromator      35
 Segmental mobility, biopolymer-bound fluoropbore      329—330
 Segmental mobility, DNA      340 341
 Seminaphthofluoresceins (SNAFLS)      548 549—551
 Seminaphthorhodofluors (SNARFS)      548 549—551
 Sensing and sensors      79 531—565
 Sensing and sensors by coltisional quenching      536—541
 Sensing and sensors by coltisional quenching, chloride      539—541
 Sensing and sensors by coltisional quenching, miscellaneous      541
 Sensing and sensors by coltisional quenching, oxygen      536—538 539
 Sensing and sensors, analyte recognition probes      552—560
 Sensing and sensors, analyte recognition probes, calcium and magnesium      556—559 565
 Sensing and sensors, analyte recognition probes, cardiac markers      564
 Sensing and sensors, analyte recognition probes, cation probe specificity      552—553
 Sensing and sensors, analyte recognition probes, chloride      539
 Sensing and sensors, analyte recognition probes, glucose      559—560
 Sensing and sensors, analyte recognition probes, sodium and potassium      554—556
 Sensing and sensors, analyte recognition probes, theory of      553—554
 Sensing and sensors, clinical chemistry      531—532
 Sensing and sensors, energy-transfer      541—545
 Sensing and sensors, glucose      542—543
 Sensing and sensors, glucose, ion      543—544 545
 Sensing and sensors, glucose, pH and
  541—542 Sensing and sensors, glucose, theory for      545
 Sensing and sensors, immunoassays      560—565
 Sensing and sensors, immunoassays, ELISA      560
 Sensing and sensors, immunoassays, energy-transfer      562—563
 Sensing and sensors, immunoassays, fluorescence polarization      563—565
 Sensing and sensors, immunoassays, time-resolved      560—562
 Sensing and sensors, lanthanide      560
 Sensing and sensors, literature references      656
 Sensing and sensors, mechanisms of sensing      535—536
 Sensing and sensors, metal-hgand complexes      see “Metal-ligand complexes”
 Sensing and sensors, molecular information from fluorescence      19—21
 Sensing and sensors, pH, two-stale sensors      545—551
 Sensing and sensors, pH, two-stale sensors, blood gases, optical detection of      545—546
 Sensing and sensors, pH, two-stale sensors, pH sensors      546—551
 Sensing and sensors, phosphorescence      538
 Sensing and sensors, photoinduced electron-transfer (PET) probes for metal ions and anions      551—552
 Sensing and sensors, probes      78 79
 Sensing and sensors, proteins as sensors      88—89
 Sensing and sensors, spectral observables for      532—535
 Sensing and sensors, spectral observables for, lifetime-based sensing      534—535
 Sensing and sensors, spectral observables for, optical properties of tissues      534
 Serotonin      480
 Serum albumin      13 71—72 75 255 256 462 503—504
 Serum albumin, anisotropy decay      362—363
 Serum albumin, intensity decay of      493
 Serum albumin, rotational correlation time      304
 Silicone, oxygen sensor support materials      536 537 538
 Silver      238 239
 Simulated intensity decay      99
 Single-channel anisotropy measurement method      298—299 300
 Single-exponential decay      619—620
 Single-exponential decay law      282
 Single-exponential decay, spherical molecules      304
 Single-exponential decay, time-dependent intensity      179
 Single-exponential fit, FD intensity decay approximation      396 397
 Single-particle detection      85
 Single-pboton excitation, green fluorescent protein      166
 Single-photon counting      100 (see also “Time-correlated aingle-photon counting”)
 Site-directed mutagenesis, azurins      454—455 (see also “Genetically engineered proteins”)
 Skeletal muscle troponin C      407—409
 Skeletal protein 4.1      386
 Smoluchowski model      241 280—281 282 284
 SNAFL      174 548 549—551
 SNARF      548 549—551
 Sodium analyte recognition probes      554—556
 Sodium Green      555 556
 Sodium metibisulfite      249
 Sodium probes      16 78 543 544 552 554—556
 Sodium-binding benzofuran isophthalate (SBFI)      554
 Soleil — Babinet compensator      149
 Soleillet’s rule, depolarization factor multiplication      311—312
 Solvent effects on emission spectra      185—208 233 452 501
 Solvent effects on emission spectra, biochemical examples with Prodan      201—202
 Solvent effects on emission spectra, biochemical examples with solvent-sensitive probes      202—205
 Solvent effects on emission spectra, biochemical examples, calmodulin, hydrophobic surface exposure      202—203
 Solvent effects on emission spectra, biochemical examples, cyclodextrin binding using dansyl probe      203
 Solvent effects on emission spectra, biochemical examples, membrane binding site polarity      203—205
 Solvent effects on emission spectra, development of advances solvent-sensitive probes      205—206
 Solvent effects on emission spectra, Lippert equation      187—194
 Solvent effects on emission spectra, Lippert equation, application of      191—193
 Solvent effects on emission spectra, Lippert equation, derivation of      187—191
 Solvent effects on emission spectra, Lippert equation, polarity scales      193—194
 Solvent effects on emission spectra, Lippert plots, specific solvent effects      196—198
 Solvent effects on emission spectra, mixtures, effects of      206—208
 Solvent effects on emission spectra, overview      185—187
 Solvent effects on emission spectra, polarity surrounding membrane-bound fluorophore      186
 Solvent effects on emission spectra, Prodan, fatty acid binding proteins      202
 Solvent effects on emission spectra, Prodan, LE and 1CT states      200—201
 Solvent effects on emission spectra, Prodan, phase transition in membranes      201—202
 Solvent effects on emission spectra, Prodan, protein association      202
 Solvent effects on emission spectra, specific      194—198
 Solvent effects on emission spectra, spectral shift mechanisms      186—187
 Solvent effects on emission spectra, summary of      208
 Solvent effects on emission spectra, temperature effects      198—201
 Solvent relaxation      12 (see also “Solvent effects on emission spectra” “Relaxation
 Solvent relaxation, excited-state reactions      515
 Solvent relaxation, versus rotational isomer formation      229—230
 Solvent-sensitive probes      71 202—205
 SPA (N-sulfopropylacridiruum)      539—541
 Species-associated spectra (SAS)      519 527
 Spectral karyotyping      614
 Spectral observables, sensors      532—535
 Spectral overlap, two-state model      519
 Spectral properties, metal-hgand complexes      576—578
 Spectral relaxation      498—499 (see also “Relaxation dynamics”)
 Spectral response, PMTs      42—43
 Spectral shift mechanisms, solvent effects on emission spectra      186—187
 Spectrofluorometer      26
 Spectrofluorometer, ideal      28—32
 Spectroscopy, general principles      see “Principles of fluorescence”
 Spectroscopy, literature references      654
 Sperm whale myoglobin      493
 Sphere of action      244—245
 Spin labeled naphthalene derivative      257
 Spin-labeled PC      273
 Spin-orbit coupling, quenching      239
 SPQ [6-methoxy-N-(3-sulfopropyl)quinolinium], chloride sensors      539 540 541
 SPQ [6-methoxy-N-(3-sulfopropyl)quinolinium], quenching      165 238
 Stains, DNA      604—607
 Stains, DNA, Bis DNA stains      605—606
 Stains, DNA, energy-transfer stains      606—607
 Stains, DNA, fragment sizing by flow cytometry      607
 Standard lamp, correction factors obtained with      51—52
 Standards,
  -carbotine derivatives      637—638 Standards, corrected emission spectra      51
 Standards, emission spectra correction      51
 Standards, lifetime      645—649
 Standards, long-wavelength      639 640 641 642
 Standards, quantum yield      52—53
 Standards, ultraviolet      639 642
 Staphylococcal nuclease      163 221 282 283 453 462 473—474
 Staphylococcal nuclease, anisotropy decay of      496
 Staphylococcal nuclease, emission center of gravity      499
 Staphylococcal nuclease, intensity decay of      493
 Staphylococcal nuclease, phosphorescence      509
 Staphylococcus aureus metalloprotease      464—465
 Static quenching      240 (see also “Quenching”)
 Static quenching, combined with dynamic quenching      243
 Static quenching, examples of      243—244
 Static quenching, theory of      242
 Steady-state amsotropy, calculation of      304
 
 | 
 |  |  |  | Ðåêëàìà |  |  |  |  |  |