Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Leach A.R. — Molecular Modelling Principles and Applications
Leach A.R. — Molecular Modelling Principles and Applications



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Molecular Modelling Principles and Applications

Àâòîð: Leach A.R.

Àííîòàöèÿ:

Preface to the Second Edition The impetus for this second edition is a desire to include some of the new techniques that have emerged in recent years and also extend the scope of the book to cover certain areas that were under-represented (even neglected) in the first edition. In this second volume there are three topics that fall into the first category (density functional theory, bioinformatics/protein structure analysis and chemoinformatics) and one main area in the second category (modelling of the solid state). In addition, of course, a new edition provides an opportunity to take a critical view of the text and to re-organise and update the material. Thus whilst much remains from the first edition, and this second book follows much the same path through the subject, readers familiar with the first edition will find some changes which I hope they will agree are for the better. As with the first edition we initially consider quantum mechanics, but this is now split into two chapters. Thus Chapter 2 provides an introduction to the ab initio and semi-empirical approaches together with some examples of the uses of quantum mechanics. Chapter 3 covers more advanced aspects of the ab initio approach, density functional theory and the particular problems of the solid state. Molecular mechanics is the subject of Chapter 4 and then in Chapter 5 we consider energy minimisation and other 'static' techniques. Chapters 6, 7 and 8 deal with the two main simulation methods (molecular dynamics and Monte Carlo). Chapter 9 is devoted to the conformational analysis of 'small' molecules but also includes some topics (e.g. cluster analysis, principal components analysis) that are widely used in informatics. In Chapter 10 the problems of protein structure prediction and protein folding are considered; this chapter also contains an introduction to some of the more widely used methods in bioinformatics. In Chapter 11 we draw upon material from the previous chapters in a discussion of free energy calculations, continuum solvent models, and methods for simulating chemical reactions and defects in solids. Finally, Chapter 12 is concerned with modelling and chemoinformatics techniques for discovering and designing new molecules, including database searching, docking, de novo design, quantitative structure-activity relationships and combinatorial library design. As in the first edition, the inexorable pace of change means that what is currently considered 'cutting edge' will soon become routine. The examples are thus chosen primarily because they illuminate the underlying theory rather than because they are the first application of a particular technique or are the most recent available. In a similar vein, it is impossible in a volume such as this to even attempt to cover everything and so there are undoubtedly areas which are under-represented. This is not intended to be a definitive historical account or a review of the current state-of-the-art. Thus, whilst I have tried to include many literature references it is possible that the invention of some technique may appear to be incorrectly attributed or a 'classic' application may be missing. A general guiding principle has been to focus on those techniques that are in widespread use rather than those which are the province of one particular research group. Despite these caveats I hope that the coverage is sufficient to provide a solid introduction to the main areas and also that those readers who are 'experts' will find something new to interest them.


ßçûê: en

Ðóáðèêà: Õèìèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 2-nd

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 774

Äîáàâëåíà â êàòàëîã: 21.02.2007

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Solvation/solvents, Monte Carlo simulation      432 452
Space group      138
Spatial restraints, satisfaction of      540—541
SPC model      216—218
Sphere-exclusion algorithm      684
Spherical cut-off      324
Spherical harmonic      30—31
Spin, density      109
Spin, local      129 135
Spin, orbitals      35
Spin-coupled valence bond theory      125—126
Spin-polarised density functional theory      129
Spin-restricted Hartree — Fock      108—110
Spin-unrestricted Hartree — Fock      108—110
Split valence double zeta basis sets      70
SPV (self-penalty walk)      289—290 584
Squares, least-squares approach      230—231
Squares, partial least      702 706—711
Squares, root-mean      273 359—360 552 667
Squares, square-well potentials      354
Squares, sum of      699—701
SRD (Smart Region Definition)      710—711
ST2 potential      217
Standard deviation      20
Statistical inefficiency      346
Statistics/statistical      20—21
Statistics/statistical, mechanics and computer simulation      347—348
Statistics/statistical, weight matrix      430
Steady state genetic algorithm      481
Stearic acid      394 400—401
Steepest descent energy minimisation      262
Step size      264
Steric energy      226
Stillinger — Weber model      241 244—245
Stochastic boundary conditions      320—321
Stochastic collisions method      384
Stochastic dynamics simulations      390—392
Stochastic matrix      415
Stokes law      388
STOs (Slater-type orbitals)      46—48 55 72
STOs (Slater-type orbitals), density functional theory      131—132
STOs (Slater-type orbitals), force fields      194
STOs (Slater-type orbitals), STO-nG basis sets      62 69 85 123
strain      296
Strain, energy      226—227 627
Stratified sampling      346
Streptavidin      641
Stress      296
Structural Classification of Proteins      539
Structural databases, conformational analysis      482 489—490 493—494 499
Structural databases, proteins      537—539 555
Structural genomics      512
Structural key      645
Structural properties, calculating      85—86
Structurally conserved regions      539—540
Structurally variable regions      539—540
Structure factor      484
Subgraph      642—643 645
Subset selection      717—718
Substitutionals      623
Substructure search      465 642—647
Sulphur dioxide      117
Sum of squares      699—701
SUMM (systematic unbounded multiple minimum)      477—478
Superfamily (proteins)      539
Superoxide dismutase      607
surface      6—8
Surface, area model      609
Surface, energy      4—5 253 475
Surface, Fermi      153—155
Surface, van der Waals      7 600
Sutton — Chen potential      241 243
SVRs (structurally variable regions)      539—540
SWISSPROT database      537
Switching function      331—334
sym-triazine      198—199
Symmetric matrix      13
Symmetric orthogonalisation      60
systematic sampling      346—347
Systematic search      649—651
Systematic search, conformational      458—464 476 505
Systematic unbounded multiple minimum      477—478
Tanimoto coefficient      676—678 685
Taylor series      10—11 230 267 342 355 358 439 592
Temperature      240
Temperature, computer simulation      309—310
Temperature, molecular dynamics simulation      368 382—385
Template forcing      491
Templating effect      694
Tensor properties      183
terminal nodes      461
Tersoff model      241 244—245
Thermodynamic(s), computer simulation      307—312
Thermodynamic(s), cycles      569—570
Thermodynamic(s), force fields      226—228
Thermodynamic(s), integration      568—569 574 577 630—631
Thermodynamic(s), perturbation      564—566 569—573 577 592
Thermodynamic(s), properties      85—86 307—312
Thermolysin      571—572
Thiazole      490
Thomas — Fermi model      127
Threading, predicting proteins by      545—547
Three-body problem/effects      34 212—214 244
Three-body problem/effects, 3D profiles      543—544 547
Three-body problem/effects, 3D, $3_{10}$      513 583—585
Threonine      511 525 546 556—557
Thrombin      522—523
Thymidylate synthase      667
Thymine      227
Time, averages      303—305
Time, correlation coefficients      374
Time, step and molecular dynamics simulation      360—364
Time-averaged NMR      487—489
Time-dependent properties and molecular dynamics simulation      374—382
Tin      155
TIP3P/TIP4P models      216—217 219 327—328
Topological indices      671—674
Torsion/torsional      166
Torsion/torsional, angle/bend      3—4 179—180 254 515
Torsion/torsional, driving      286—288
Torsion/torsional, improper      176—178
Torsion/torsional, parameters      229
Torsion/torsional, terms      173—176
Total electron density and molecular orbitals      77—79
Total sum of squares      699—700
Toxvaerd anisotropic model      221—222
Transfer RNA (tRNA)      509
Transferability and force fields      168
Transition structures      255 279—295
Transport and molecular dynamics      380—382
Transpose of matrix      15
Trapezium rule      412—413
Tree representation      461—462
Trial and error and parametrisation      228—229
Triangle smoothing      468—469 660—661
Trimethoprim      278—279
Truncating potential      324—334
Trypsin      522—523 587 607
Tryptophan      169 511 525 556—557
TSS (total sum of squares)      699—700
Tversky similarity      677—8
Twin-range method      327
Two-electron integrals      50—51
Tyrosine      286 510 525 542 556—557
UFF (Universal Force Field)      193—194 232 235 237
UHF (spin-unrestricted Hartree — Fock theory)      108—110
Ullmann algorithm      646—647
Umbrella sampling      581—582 584
Underlying matrix      415
Unit cell      138
United atom force fields and reduced representations      221—225
Universal Force Field      see “UFF”
Uracil-2, 6—diaminopyridine (DAP)      227—228
Urey — Bradley force field      179 235
Vacancy      622 627
Vacancy, formation energy      240
Valence, band      142
Valence, bond theories      124—126
Valence, electron density      160
Valence, split      70
Valine      511 525 546 556—557
van der Waals, energy      253
van der Waals, interactions      320 486
van der Waals, interactions, force fields      166—167 204—212 231 237
van der Waals, interactions, free energy calculations      566—567 576 586 588—589
van der Waals, parameters      229
van der Waals, potentials      666
van der Waals, radii      84 470 592 596 660
van der Waals, surface      7 600
Variable metric      see “Quasi-Newton”
Variables (factors)      697
Variance      20
Variance-covariance matrix      498
Variation, coefficient of      680—681
Variation, theorem      51—52
Vectors      11—12
Vectors, path, gradient      80—81
Vectors, product      12 14
Veillard — Baron order parameter      322
Velocity autocorrelation      376—378
Velocity Verlet algorithm      357
Verdier Stockmayer algorithm      427
Verlet algorithm/parameters      321—322 325—326 355—359 403—404
Vibrational modes      274
Virial      309 349—350
Virial theorem of Clausius      309
Virtual molecules      642
Virtual orbitals      61
Virtual screening      715
VWN (Vosko — Wilk — Nusair) standard local correlation      136
Water and 1—octanol, partition between      668—669
Water and carbon dioxide      616—617
Water, bond order      83
Water, computer simulation      317 327—328
Water, dimer analysis      123—124 327—328
Water, force field models      201 216—220
Water, free energy calculations      573
Water, free energy calculations, differences      569—570 (see also “Solvation”)
Water, infrared spectra      379
Water, normal modes of      274
wavefunction      41—46 161
Wigner — Seitz cells      140 350
Wiswesser line notation      643—644
Woodward — Hoffmann rules      102 292—293 295
World Drug Index      685
World Wide Web (WWW)      9—10
X-ray crystallography      see “NMR”
YETI force field      215—216
Z-matrix      2—3 9 74 255 271—272
ZDO (zero-differential overlap)      88—89 91
ZEBEDDE (ZEolites By Evolutionary De novo DEsign)      694
Zeolites      298 449—450
Zeolites, force fields for      236—237
Zeolites, synthesis      693—694
Zero-differential overlap      88—89 91
Zero-point energy      274
Zinc      607 649—650
ZINDO program      99
Zwanzig expression      588 631—632
‘Continuous’ models of polymers      428—431
‘TIM barrel’      522—523
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå