Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Leach A.R. — Molecular Modelling Principles and Applications
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Molecular Modelling Principles and Applications
Àâòîð: Leach A.R.
Àííîòàöèÿ: Preface to the Second Edition The impetus for this second edition is a desire to include some of the new techniques that have emerged in recent years and also extend the scope of the book to cover certain areas that were under-represented (even neglected) in the first edition. In this second volume there are three topics that fall into the first category (density functional theory, bioinformatics/protein structure analysis and chemoinformatics) and one main area in the second category (modelling of the solid state). In addition, of course, a new edition provides an opportunity to take a critical view of the text and to re-organise and update the material. Thus whilst much remains from the first edition, and this second book follows much the same path through the subject, readers familiar with the first edition will find some changes which I hope they will agree are for the better. As with the first edition we initially consider quantum mechanics, but this is now split into two chapters. Thus Chapter 2 provides an introduction to the ab initio and semi-empirical approaches together with some examples of the uses of quantum mechanics. Chapter 3 covers more advanced aspects of the ab initio approach, density functional theory and the particular problems of the solid state. Molecular mechanics is the subject of Chapter 4 and then in Chapter 5 we consider energy minimisation and other 'static' techniques. Chapters 6, 7 and 8 deal with the two main simulation methods (molecular dynamics and Monte Carlo). Chapter 9 is devoted to the conformational analysis of 'small' molecules but also includes some topics (e.g. cluster analysis, principal components analysis) that are widely used in informatics. In Chapter 10 the problems of protein structure prediction and protein folding are considered; this chapter also contains an introduction to some of the more widely used methods in bioinformatics. In Chapter 11 we draw upon material from the previous chapters in a discussion of free energy calculations, continuum solvent models, and methods for simulating chemical reactions and defects in solids. Finally, Chapter 12 is concerned with modelling and chemoinformatics techniques for discovering and designing new molecules, including database searching, docking, de novo design, quantitative structure-activity relationships and combinatorial library design. As in the first edition, the inexorable pace of change means that what is currently considered 'cutting edge' will soon become routine. The examples are thus chosen primarily because they illuminate the underlying theory rather than because they are the first application of a particular technique or are the most recent available. In a similar vein, it is impossible in a volume such as this to even attempt to cover everything and so there are undoubtedly areas which are under-represented. This is not intended to be a definitive historical account or a review of the current state-of-the-art. Thus, whilst I have tried to include many literature references it is possible that the invention of some technique may appear to be incorrectly attributed or a 'classic' application may be missing. A general guiding principle has been to focus on those techniques that are in widespread use rather than those which are the province of one particular research group. Despite these caveats I hope that the coverage is sufficient to provide a solid introduction to the main areas and also that those readers who are 'experts' will find something new to interest them.
ßçûê:
Ðóáðèêà: Õèìèÿ /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Èçäàíèå: 2-nd
Ãîä èçäàíèÿ: 2001
Êîëè÷åñòâî ñòðàíèö: 774
Äîáàâëåíà â êàòàëîã: 21.02.2007
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
(cross-validated R2) 701
699
reaction, potential of mean force 612—614
reaction, transition state of 280—282
-Helix 513—515
-strand structures 513—514
-turns 513
systems 197—199
systems, benzene 126
systems, delocalised 233—234
1, 2-dichloroethane 387—388
1, 3, 5-trifluorobenzene 198—199
1-octanol and water, partition between 668—669
2-methyl propane 644
2D substructure searching 642—647
4-acetamido benzoic acid 661
4-methyl-2 oxetanone 137
ab initio defined 65
ab initio molecular dynamics 616—622
ab initio potentials for water 216—218
ab initio quantum mechanics, calculating properties using 74—86 (see also “Advanced ab initio methods”)
Absolute free energies 573—574
Accessible surface 7
ACE (angiotensin converting enzyme) 649—651
Acetaldehyde 180 578
Acetamide 573
Acetic acid 504—505 573 643
Acetic acid, SMILES notation 644 645
Acetonitrile 597
Acetylcholine 678
Acronyms and abbreviations 104—105 553—554
Adenine 227
Adiabatic mapping 286
Adjacency matrix 647
Adjoint matrix 15
Adsorption processes, Monte Carlo simulations of 441—442
Advanced ab initio methods 108—164
Advanced ab initio methods, density functional theory 126—137
Advanced ab initio methods, electron correlation 110—117
Advanced ab initio methods, energy component analysis 122—124
Advanced ab initio methods, open-shell systems 108—110
Advanced ab initio methods, practical considerations 117—122
Advanced ab initio methods, solid state quantum mechanics 138—160
Advanced ab initio methods, valence bond theories 124—126
Agglomerative cluster analysis methods 493—494
Agonists 640
AINT function 350
Alanines 169 459 511 525 542 546 556—557
Alanines, energy minimisation methods 277 280 286
Alanines, free energy calculations 583—584
Aldehyde 610—611
Aldol reactions 610—612
Aliovalent substitution 623
Alkaline earth oxides 147
Alkanes 449—450
AMBER force field 169—170 175—176 191 211 230—232
AMI 86 97—98 102—103 230
Amino acids 511 549 602
Amino acids, computer simulation 329—330
Amino acids, conformational analysis 459 487
Amino acids, energy minimisation methods 277 280 286
Amino acids, force fields 169—170 221
Amino acids, free energy calculations 572 583—584
Amino acids, motifs 522
Amino acids, PAM matrices 524—526 531 556—557
Amino acids, torsion angles 515 (see also “Peptides; proteins”)
Amino acids, ’threading’ 546
Aminothlazoles 716
AMP AC program 8 99
Amphiphiles, molecular dynamics simulation of 394—404
Angiotension converting enzyme 649—651
Angle bending 166 173
Annealing, simulated 483—489 504—505 519 691
Annotations 513
Antagonists 640
Antisymmetry principle 35
Arbitrary step energy minimisation 264
Argand diagram 17
Arginme 329—330 510 525 556—557
Argon 253 323
Argon, force fields 205 214
Argon, J-walking 434—435
Argon, time-steps 361—362
Argon, velocity autocorrelation 377
Arithmetic mean 20
Aromatic systems and charge schemes 197—199
Asparagine 330 510 525 546 556—557
Aspartic acid 510 525 556—557
Atoms in molecules theory 80—81
Atoms/atomic, charges 157—159 181 192—195
Atoms/atomic, marker 329—330
Atoms/atomic, one-electron 30—34
Atoms/atomic, orbitals 41—42 56 100 241
Atoms/atomic, polyelectronic 34—41
Atoms/atomic, type 169
Atoms/atomic, units 29
Aufbau principle 35
Austin Model I (AMI) 86 97—98 102—103
Autocorrelation function 376—378
Automated protein modelling 548—549
Autoscaling 681
Availability 300
Axilrod — Teller term (triple-dipole) 213—215 239
Azimuthal quantum number 31
B3LYP density function 615
Backtracking 462
Backward sampling 567
band theory 141—142
Band theory, orbital-based approach 142—146
Barker — Fisher — Watts potential 214
Basic Local Alignment Search Tool see “BLAST”
Basic Local Alignment Search Tool, basis sets/functions 56 85 123
Basic Local Alignment Search Tool, computational quantum mechanics 65—74
Basic Local Alignment Search Tool, Gaussian functions 65—73 passim 120 137 195
Basic Local Alignment Search Tool, superposition error 121—122 (see also “STOs”)
BCUT method 686—687
Bead model of polymers 428
Becke see “BLYP”
Beeman’s algorithm 357
Bending 166 173 176—178
Benperidol 675
Benzamidine 586—588
benzene 123
Benzene, force fields 170 174 178 186 197—198
Benzene, Huckel theory 99 100
Benzene, ring 81 170 178
Benzene, SMILES notation 644
Benzene, spin-coupled valence bond theory 126
Benzyl bromide 670
Beryllium 40 113
BFGS(Broyden-Fletcher-Goldfarb-Shanno) method 269—270
Bilinear model 702
Binding site 662 689—691
Binomial expansion 11
Bioinformatics 513 (see also “Amino acids” “DNA” “Proteins”)
Bioisosteres 648
Biotin 576 641
bitstring 645—647
BLAST (Basic Local Alignment Search Tool) 521 524 531—534 548
Bloch’s theorem/function 142—145 146 148 161
Block-diagonal Newton — Raphson minimisation 268
BLOSUM matrices 526
BLYP (Becke gradient-exchange correction and Lee — Yang — Parr correlation functional) 135 136 137
Bohr radius 31
Boltzmann distribution 192 214 274 483 611
Boltzmann distribution, computer simulation 306—307 347
Boltzmann distribution, conformational analysis 457
Boltzmann distribution, Monte Carlo simulation 415—416 433 435—436 445—446
Boltzmann factor 306—307 413
Boltzmann weighted average 576 581
Bond fluctuation model 424—425
Bond/bonding 644
Bond/bonding, inorganic molecules 234—235
Bond/bonding, lack of see “Non-bonded interactions”
Bond/bonding, orders 81—83
Bond/bonding, stretching 166 170—173
Bond/bonding, valence 124—126 (see also “Under carbon” “Hydrogen”)
Born equation/model 238 593—594 598—601 609
Born — Oppenheimer approximation 4 35—36 50
Boundary, computer simulation 317—321
Boundary, element method 598
Bravais lattices 138—139
Brillouin’s theorem 112—113 115
Brilloum zone 140—141 145—146 150—151 157—158 298—299
Bromine 571
Broyden — Fletcher — Goldfarb — Shanno method 269—270
BSSE (basis set superposition error) 121—122
Buckingham potential 209 238
Build-up approach 517
Butadiene 233 294—295
Butane 85—86 186 449—450 582
Butanone 611—612
Cage structure of liquids 377
Calcium 589 626
Calix[4]arene 291—292
Cambridge structural database see “CSD”
canonical ensemble 563 569
Canonical genetic algorithms 479—480
Canonical representation 644
Canonical structures 541
Captopril 649
Car — Parrinello scheme 610 617—619
Carbo index 678—679
Carbon dioxide 181 316 616—617
Carbon, bonds 4—5 98 362 612 652
Carbon, bonds, energy minimisation methods 253 280—281
Carbon, bonds, force fields 167 180 211 233 236
Carbon, five-carbon fragment 472
Carbon, force fields 167 180 211 233 236 244
Carbon, valence electron density 160
Carbonic anhydrase 616
Carboxylic acid 660
Cartesian coordinates 2—4
Cartesian coordinates, conformational analysis 466—468
Cartesian coordinates, energy minimisation methods 255 257—258 275 290
Cartesian coordinates, molecular dynamics simulation 370 372 379 393
Cartesian coordinates, Monte Carlo simulation 417 420—421 423
Cartesian coordinates, vectors 11—12
CASP3 548
CASSCF (complete active-space SCF) 113 295
CAVEAT program 689
CBMC (configurational bias Monte Carlo) simulation 443—50
Cell, cubic 315—319
Cell, index method 326
Cell, multipole method 341—343
Cell, unit 138
Cell, Wigner — Seitz 140 350
Central dogma 509 512
Central multipole expansion 181—187
CFF (consistent force field) 231
Chain amphiphiles and molecular dynamics 394—404
Charge 187
Charge, atomic 157—159 181 191—195
Charge, density matrix 58—59
Charge, image simulation 340—341
Charge, oscillating 201—202
Charge, schemes 197—199
CHELP procedure 191
Chemical potential calculation in Monte Carlo simulation 442—443
Chemical reactions 610—622
Chemical reactions, molecular dynamics 616—622
Chemical reactions, potential of mean force of 612—614
Chemical reactions, quantum and molecular mechanics combined 614—616
Chemical reactions, simulation empirically 610—612
Chemokine 475
Chi molecular connectivity indices 672
Chi-squared test 344—345
Chiral constraints 473—474
Chlorides 238 612—613 614 676—677
Chlorine 181 231 280—281 571 612 620—621
Chloroform 227 573
Chlorpromazine 678
Chymosin 545
Chymotrypsin 522—523
CI (configuration interaction) 111—113 120
CID (configuration interaction doubles) 112 113
CISD (configuration interaction singles and doubles) 112 113
City block see “Hamming”
Clausius — Mosotti relationship 238—239
Clausius, virial theorem of 309
Clique detection 653—656
CLOGP program 669—670
Closed-shell systems 51 56—9 86—88 109
Cluster analysis 494 534 682—683
Clustering algorithms 491—497
CMR program 671
CNDO (complete neglect of differential overlap) 86 89—92 93 94 95
Coefficients 148—149 374
Coefficients, new molecules 676—678 680—681 685
Coefficients, partition 572—573 668—671
Cofactor 14—15
Combination generator 420 453—454
Combinatorial explosion 460—461
Combinatorial libraries 711—719
CoMFA (comparative molecular field analysis) 679 708—711
Comparative modelling of proteins 539—545
Comparative molecular field analysis 679 708—711
Complete active-space SCF 113 295
Complete neglect of differential overlap 86 89—92 93 94 95
Complete-linkage (furthest-neighbour) cluster algorithm 493—494
complex numbers 16—18
Computational quantum mechanics 26—107
Computational quantum mechanics, acronyms used in 104—105
Computational quantum mechanics, approximate orbital theories 86
Computational quantum mechanics, atomic units 29
Computational quantum mechanics, basis sets 65—74
Computational quantum mechanics, calculating properties 74—86
Computational quantum mechanics, Huckel theory 99—102
Computational quantum mechanics, one-electron atoms 30—34
Computational quantum mechanics, operators 28—29
Computational quantum mechanics, polyelectroruc atoms and molecules 34—41
Computational quantum mechanics, semi-empirical methods 65 86—99 102—103 “Hartree
Computer simulation 303—352
Computer simulation, boundaries 317—321
Computer simulation, equilibration, monitoring 321—323
Computer simulation, free energy calculation difficulties 563—564
Computer simulation, long-range forces 334—343
Computer simulation, molecular dynamics 305—306 307
Computer simulation, phase space 312—315
Computer simulation, practical aspects 315—316
Computer simulation, real gas contribution to virial 309 349—350
Computer simulation, results and errors 343—347
Computer simulation, statistical mechanics 347—348
Computer simulation, thermodynamic properties, simple 307—312
Computer simulation, time and ensemble averages 303—305
Computer simulation, translating particle back into control box 350
Computer simulation, truncating potential and minimum image convention 324—334 (see also “Molecular dynamics simulation Monte
Computers, hardware 8—9
Computers, Internet and World Wide Web 9—10 548 553
Computers, software 8—9 99
concepts 1—25 (see also “Coordinates” “Mathematical
CONCORD program 659
Conditionally convergent series 336
Conduction band 142
Conductor-like screening model 597
Configuration interaction see “CI” “CID” “CISD”
Configurational bias see “CBMC”
Conformational analysis 457—508
Conformational analysis and NMR/x-ray crystallography 468 474—475 483—489
Conformational analysis, choice of method 476—477
Ðåêëàìà