Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Leach A.R. — Molecular Modelling Principles and Applications
Leach A.R. — Molecular Modelling Principles and Applications



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Molecular Modelling Principles and Applications

Àâòîð: Leach A.R.

Àííîòàöèÿ:

Preface to the Second Edition The impetus for this second edition is a desire to include some of the new techniques that have emerged in recent years and also extend the scope of the book to cover certain areas that were under-represented (even neglected) in the first edition. In this second volume there are three topics that fall into the first category (density functional theory, bioinformatics/protein structure analysis and chemoinformatics) and one main area in the second category (modelling of the solid state). In addition, of course, a new edition provides an opportunity to take a critical view of the text and to re-organise and update the material. Thus whilst much remains from the first edition, and this second book follows much the same path through the subject, readers familiar with the first edition will find some changes which I hope they will agree are for the better. As with the first edition we initially consider quantum mechanics, but this is now split into two chapters. Thus Chapter 2 provides an introduction to the ab initio and semi-empirical approaches together with some examples of the uses of quantum mechanics. Chapter 3 covers more advanced aspects of the ab initio approach, density functional theory and the particular problems of the solid state. Molecular mechanics is the subject of Chapter 4 and then in Chapter 5 we consider energy minimisation and other 'static' techniques. Chapters 6, 7 and 8 deal with the two main simulation methods (molecular dynamics and Monte Carlo). Chapter 9 is devoted to the conformational analysis of 'small' molecules but also includes some topics (e.g. cluster analysis, principal components analysis) that are widely used in informatics. In Chapter 10 the problems of protein structure prediction and protein folding are considered; this chapter also contains an introduction to some of the more widely used methods in bioinformatics. In Chapter 11 we draw upon material from the previous chapters in a discussion of free energy calculations, continuum solvent models, and methods for simulating chemical reactions and defects in solids. Finally, Chapter 12 is concerned with modelling and chemoinformatics techniques for discovering and designing new molecules, including database searching, docking, de novo design, quantitative structure-activity relationships and combinatorial library design. As in the first edition, the inexorable pace of change means that what is currently considered 'cutting edge' will soon become routine. The examples are thus chosen primarily because they illuminate the underlying theory rather than because they are the first application of a particular technique or are the most recent available. In a similar vein, it is impossible in a volume such as this to even attempt to cover everything and so there are undoubtedly areas which are under-represented. This is not intended to be a definitive historical account or a review of the current state-of-the-art. Thus, whilst I have tried to include many literature references it is possible that the invention of some technique may appear to be incorrectly attributed or a 'classic' application may be missing. A general guiding principle has been to focus on those techniques that are in widespread use rather than those which are the province of one particular research group. Despite these caveats I hope that the coverage is sufficient to provide a solid introduction to the main areas and also that those readers who are 'experts' will find something new to interest them.


ßçûê: en

Ðóáðèêà: Õèìèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 2-nd

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 774

Äîáàâëåíà â êàòàëîã: 21.02.2007

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$Q^2$ (cross-validated R2)      701
$r^2$      699
$S_N2$ reaction, potential of mean force      612—614
$S_N2$ reaction, transition state of      280—282
$\alpha$-Helix      513—515
$\beta$-strand structures      513—514
$\beta$-turns      513
$\pi$ systems      197—199
$\pi$ systems, benzene      126
$\pi$ systems, delocalised      233—234
1, 2-dichloroethane      387—388
1, 3, 5-trifluorobenzene      198—199
1-octanol and water, partition between      668—669
2-methyl propane      644
2D substructure searching      642—647
4-acetamido benzoic acid      661
4-methyl-2 oxetanone      137
ab initio defined      65
ab initio molecular dynamics      616—622
ab initio potentials for water      216—218
ab initio quantum mechanics, calculating properties using      74—86 (see also “Advanced ab initio methods”)
Absolute free energies      573—574
Accessible surface      7
ACE (angiotensin converting enzyme)      649—651
Acetaldehyde      180 578
Acetamide      573
Acetic acid      504—505 573 643
Acetic acid, SMILES notation      644 645
Acetonitrile      597
Acetylcholine      678
Acronyms and abbreviations      104—105 553—554
Adenine      227
Adiabatic mapping      286
Adjacency matrix      647
Adjoint matrix      15
Adsorption processes, Monte Carlo simulations of      441—442
Advanced ab initio methods      108—164
Advanced ab initio methods, density functional theory      126—137
Advanced ab initio methods, electron correlation      110—117
Advanced ab initio methods, energy component analysis      122—124
Advanced ab initio methods, open-shell systems      108—110
Advanced ab initio methods, practical considerations      117—122
Advanced ab initio methods, solid state quantum mechanics      138—160
Advanced ab initio methods, valence bond theories      124—126
Agglomerative cluster analysis methods      493—494
Agonists      640
AINT function      350
Alanines      169 459 511 525 542 546 556—557
Alanines, energy minimisation methods      277 280 286
Alanines, free energy calculations      583—584
Aldehyde      610—611
Aldol reactions      610—612
Aliovalent substitution      623
Alkaline earth oxides      147
Alkanes      449—450
AMBER force field      169—170 175—176 191 211 230—232
AMI      86 97—98 102—103 230
Amino acids      511 549 602
Amino acids, computer simulation      329—330
Amino acids, conformational analysis      459 487
Amino acids, energy minimisation methods      277 280 286
Amino acids, force fields      169—170 221
Amino acids, free energy calculations      572 583—584
Amino acids, motifs      522
Amino acids, PAM matrices      524—526 531 556—557
Amino acids, torsion angles      515 (see also “Peptides; proteins”)
Amino acids, ’threading’      546
Aminothlazoles      716
AMP AC program      8 99
Amphiphiles, molecular dynamics simulation of      394—404
Angiotension converting enzyme      649—651
Angle bending      166 173
Annealing, simulated      483—489 504—505 519 691
Annotations      513
Antagonists      640
Antisymmetry principle      35
Arbitrary step energy minimisation      264
Argand diagram      17
Arginme      329—330 510 525 556—557
Argon      253 323
Argon, force fields      205 214
Argon, J-walking      434—435
Argon, time-steps      361—362
Argon, velocity autocorrelation      377
Arithmetic mean      20
Aromatic systems and charge schemes      197—199
Asparagine      330 510 525 546 556—557
Aspartic acid      510 525 556—557
Atoms in molecules theory      80—81
Atoms/atomic, charges      157—159 181 192—195
Atoms/atomic, marker      329—330
Atoms/atomic, one-electron      30—34
Atoms/atomic, orbitals      41—42 56 100 241
Atoms/atomic, polyelectronic      34—41
Atoms/atomic, type      169
Atoms/atomic, units      29
Aufbau principle      35
Austin Model I (AMI)      86 97—98 102—103
Autocorrelation function      376—378
Automated protein modelling      548—549
Autoscaling      681
Availability      300
Axilrod — Teller term (triple-dipole)      213—215 239
Azimuthal quantum number      31
B3LYP density function      615
Backtracking      462
Backward sampling      567
band theory      141—142
Band theory, orbital-based approach      142—146
Barker — Fisher — Watts potential      214
Basic Local Alignment Search Tool      see “BLAST”
Basic Local Alignment Search Tool, basis sets/functions      56 85 123
Basic Local Alignment Search Tool, computational quantum mechanics      65—74
Basic Local Alignment Search Tool, Gaussian functions      65—73 passim 120 137 195
Basic Local Alignment Search Tool, superposition error      121—122 (see also “STOs”)
BCUT method      686—687
Bead model of polymers      428
Becke      see “BLYP”
Beeman’s algorithm      357
Bending      166 173 176—178
Benperidol      675
Benzamidine      586—588
benzene      123
Benzene, force fields      170 174 178 186 197—198
Benzene, Huckel theory      99 100
Benzene, ring      81 170 178
Benzene, SMILES notation      644
Benzene, spin-coupled valence bond theory      126
Benzyl bromide      670
Beryllium      40 113
BFGS(Broyden-Fletcher-Goldfarb-Shanno) method      269—270
Bilinear model      702
Binding site      662 689—691
Binomial expansion      11
Bioinformatics      513 (see also “Amino acids” “DNA” “Proteins”)
Bioisosteres      648
Biotin      576 641
bitstring      645—647
BLAST (Basic Local Alignment Search Tool)      521 524 531—534 548
Bloch’s theorem/function      142—145 146 148 161
Block-diagonal Newton — Raphson minimisation      268
BLOSUM matrices      526
BLYP (Becke gradient-exchange correction and Lee — Yang — Parr correlation functional)      135 136 137
Bohr radius      31
Boltzmann distribution      192 214 274 483 611
Boltzmann distribution, computer simulation      306—307 347
Boltzmann distribution, conformational analysis      457
Boltzmann distribution, Monte Carlo simulation      415—416 433 435—436 445—446
Boltzmann factor      306—307 413
Boltzmann weighted average      576 581
Bond fluctuation model      424—425
Bond/bonding      644
Bond/bonding, inorganic molecules      234—235
Bond/bonding, lack of      see “Non-bonded interactions”
Bond/bonding, orders      81—83
Bond/bonding, stretching      166 170—173
Bond/bonding, valence      124—126 (see also “Under carbon” “Hydrogen”)
Born equation/model      238 593—594 598—601 609
Born — Oppenheimer approximation      4 35—36 50
Boundary, computer simulation      317—321
Boundary, element method      598
Bravais lattices      138—139
Brillouin’s theorem      112—113 115
Brilloum zone      140—141 145—146 150—151 157—158 298—299
Bromine      571
Broyden — Fletcher — Goldfarb — Shanno method      269—270
BSSE (basis set superposition error)      121—122
Buckingham potential      209 238
Build-up approach      517
Butadiene      233 294—295
Butane      85—86 186 449—450 582
Butanone      611—612
Cage structure of liquids      377
Calcium      589 626
Calix[4]arene      291—292
Cambridge structural database      see “CSD”
canonical ensemble      563 569
Canonical genetic algorithms      479—480
Canonical representation      644
Canonical structures      541
Captopril      649
Car — Parrinello scheme      610 617—619
Carbo index      678—679
Carbon dioxide      181 316 616—617
Carbon, bonds      4—5 98 362 612 652
Carbon, bonds, energy minimisation methods      253 280—281
Carbon, bonds, force fields      167 180 211 233 236
Carbon, five-carbon fragment      472
Carbon, force fields      167 180 211 233 236 244
Carbon, valence electron density      160
Carbonic anhydrase      616
Carboxylic acid      660
Cartesian coordinates      2—4
Cartesian coordinates, conformational analysis      466—468
Cartesian coordinates, energy minimisation methods      255 257—258 275 290
Cartesian coordinates, molecular dynamics simulation      370 372 379 393
Cartesian coordinates, Monte Carlo simulation      417 420—421 423
Cartesian coordinates, vectors      11—12
CASP3      548
CASSCF (complete active-space SCF)      113 295
CAVEAT program      689
CBMC (configurational bias Monte Carlo) simulation      443—50
Cell, cubic      315—319
Cell, index method      326
Cell, multipole method      341—343
Cell, unit      138
Cell, Wigner — Seitz      140 350
Central dogma      509 512
Central multipole expansion      181—187
CFF (consistent force field)      231
Chain amphiphiles and molecular dynamics      394—404
Charge      187
Charge, atomic      157—159 181 191—195
Charge, density matrix      58—59
Charge, image simulation      340—341
Charge, oscillating      201—202
Charge, schemes      197—199
CHELP procedure      191
Chemical potential calculation in Monte Carlo simulation      442—443
Chemical reactions      610—622
Chemical reactions, molecular dynamics      616—622
Chemical reactions, potential of mean force of      612—614
Chemical reactions, quantum and molecular mechanics combined      614—616
Chemical reactions, simulation empirically      610—612
Chemokine      475
Chi molecular connectivity indices      672
Chi-squared test      344—345
Chiral constraints      473—474
Chlorides      238 612—613 614 676—677
Chlorine      181 231 280—281 571 612 620—621
Chloroform      227 573
Chlorpromazine      678
Chymosin      545
Chymotrypsin      522—523
CI (configuration interaction)      111—113 120
CID (configuration interaction doubles)      112 113
CISD (configuration interaction singles and doubles)      112 113
City block      see “Hamming”
Clausius — Mosotti relationship      238—239
Clausius, virial theorem of      309
Clique detection      653—656
CLOGP program      669—670
Closed-shell systems      51 56—9 86—88 109
Cluster analysis      494 534 682—683
Clustering algorithms      491—497
CMR program      671
CNDO (complete neglect of differential overlap)      86 89—92 93 94 95
Coefficients      148—149 374
Coefficients, new molecules      676—678 680—681 685
Coefficients, partition      572—573 668—671
Cofactor      14—15
Combination generator      420 453—454
Combinatorial explosion      460—461
Combinatorial libraries      711—719
CoMFA (comparative molecular field analysis)      679 708—711
Comparative modelling of proteins      539—545
Comparative molecular field analysis      679 708—711
Complete active-space SCF      113 295
Complete neglect of differential overlap      86 89—92 93 94 95
Complete-linkage (furthest-neighbour) cluster algorithm      493—494
complex numbers      16—18
Computational quantum mechanics      26—107
Computational quantum mechanics, acronyms used in      104—105
Computational quantum mechanics, approximate orbital theories      86
Computational quantum mechanics, atomic units      29
Computational quantum mechanics, basis sets      65—74
Computational quantum mechanics, calculating properties      74—86
Computational quantum mechanics, Huckel theory      99—102
Computational quantum mechanics, one-electron atoms      30—34
Computational quantum mechanics, operators      28—29
Computational quantum mechanics, polyelectroruc atoms and molecules      34—41
Computational quantum mechanics, semi-empirical methods      65 86—99 102—103 “Hartree
Computer simulation      303—352
Computer simulation, boundaries      317—321
Computer simulation, equilibration, monitoring      321—323
Computer simulation, free energy calculation difficulties      563—564
Computer simulation, long-range forces      334—343
Computer simulation, molecular dynamics      305—306 307
Computer simulation, phase space      312—315
Computer simulation, practical aspects      315—316
Computer simulation, real gas contribution to virial      309 349—350
Computer simulation, results and errors      343—347
Computer simulation, statistical mechanics      347—348
Computer simulation, thermodynamic properties, simple      307—312
Computer simulation, time and ensemble averages      303—305
Computer simulation, translating particle back into control box      350
Computer simulation, truncating potential and minimum image convention      324—334 (see also “Molecular dynamics simulation Monte
Computers, hardware      8—9
Computers, Internet and World Wide Web      9—10 548 553
Computers, software      8—9 99
concepts      1—25 (see also “Coordinates” “Mathematical
CONCORD program      659
Conditionally convergent series      336
Conduction band      142
Conductor-like screening model      597
Configuration interaction      see “CI” “CID” “CISD”
Configurational bias      see “CBMC”
Conformational analysis      457—508
Conformational analysis and NMR/x-ray crystallography      468 474—475 483—489
Conformational analysis, choice of method      476—477
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå