Àâòîðèçàöèÿ 
		         
		        
					
 
		          
		        
			          
		        
			        Ïîèñê ïî óêàçàòåëÿì 
		         
		        
			        
					 
		          
		        
			          
			
			         
       		 
			          
                
                    
                        
                     
                  
		
			          
		        
			          
		
            
	     
	    
	    
            
		
                    Leach A.R. — Molecular Modelling Principles and Applications 
                  
                
                    
                        
                            
                                
                                    Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå    Íàøëè îïå÷àòêó? 
 
                                
                                    Íàçâàíèå:   Molecular Modelling Principles and ApplicationsÀâòîð:   Leach A.R.  Àííîòàöèÿ:  Preface to the Second Edition The impetus for this second edition is a desire to include some of the new techniques that have emerged in recent years and also extend the scope of the book to cover certain areas that were under-represented (even neglected) in the first edition. In this second volume there are three topics that fall into the first category (density functional theory, bioinformatics/protein structure analysis and chemoinformatics) and one main area in the second category (modelling of the solid state). In addition, of course, a new edition provides an opportunity to take a critical view of the text and to re-organise and update the material. Thus whilst much remains from the first edition, and this second book follows much the same path through the subject, readers familiar with the first edition will find some changes which I hope they will agree are for the better. As with the first edition we initially consider quantum mechanics, but this is now split into two chapters. Thus Chapter 2 provides an introduction to the ab initio and semi-empirical approaches together with some examples of the uses of quantum mechanics. Chapter 3 covers more advanced aspects of the ab initio approach, density functional theory and the particular problems of the solid state. Molecular mechanics is the subject of Chapter 4 and then in Chapter 5 we consider energy minimisation and other 'static' techniques. Chapters 6, 7 and 8 deal with the two main simulation methods (molecular dynamics and Monte Carlo). Chapter 9 is devoted to the conformational analysis of 'small' molecules but also includes some topics (e.g. cluster analysis, principal components analysis) that are widely used in informatics. In Chapter 10 the problems of protein structure prediction and protein folding are considered; this chapter also contains an introduction to some of the more widely used methods in bioinformatics. In Chapter 11 we draw upon material from the previous chapters in a discussion of free energy calculations, continuum solvent models, and methods for simulating chemical reactions and defects in solids. Finally, Chapter 12 is concerned with modelling and chemoinformatics techniques for discovering and designing new molecules, including database searching, docking, de novo design, quantitative structure-activity relationships and combinatorial library design. As in the first edition, the inexorable pace of change means that what is currently considered 'cutting edge' will soon become routine. The examples are thus chosen primarily because they illuminate the underlying theory rather than because they are the first application of a particular technique or are the most recent available. In a similar vein, it is impossible in a volume such as this to even attempt to cover everything and so there are undoubtedly areas which are under-represented. This is not intended to be a definitive historical account or a review of the current state-of-the-art. Thus, whilst I have tried to include many literature references it is possible that the invention of some technique may appear to be incorrectly attributed or a 'classic' application may be missing. A general guiding principle has been to focus on those techniques that are in widespread use rather than those which are the province of one particular research group. Despite these caveats I hope that the coverage is sufficient to provide a solid introduction to the main areas and also that those readers who are 'experts' will find something new to interest them.
ßçûê:  Ðóáðèêà:  Õèìèÿ /Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ:  Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö ed2k:   ed2k stats Èçäàíèå:  2-ndÃîä èçäàíèÿ:  2001Êîëè÷åñòâî ñòðàíèö:  774Äîáàâëåíà â êàòàëîã:  21.02.2007Îïåðàöèè:  Ïîëîæèòü íà ïîëêó  |
	 
	Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà  | Ñêîïèðîâàòü ID 
                                 
                             
                        
                     
                 
                                                                
			          
                
                    Ïðåäìåòíûé óêàçàòåëü 
                  
                
                    
                        Locally enhanced sampling 575—576 LogP 668—670 London force 204—205 Long time-tails, molecular dynamics 377 Long-range correction 327 Long-range forces and computer simulation 334—343 Loop conformations 541—542 Lorentz — Berthelot mixing rules 210 Low-mode search 478—479 Lowdin population analysis 80 Lower-energy regions 564 Lowest unoccupied molecular orbit 79 112 293—294 LR (linear response) 588—589 591 631—632 LSDFT (local spin density functional theory) 129 135 LUDI program 689 LUMO (lowest unoccupied molecular orbit) 79 112 293—294 Lysine 510 525 556—557 MACCS system 645 Maclaurin series 11 Magnesium 238 623 626 Many-body, effects in empirical potentials 212—214 Many-body, perturbation theory 114—117 Many-body, potentials 241 Mapping, adiabatic 286 Mapping, distance 651 Mapping, pharmacophore 648 Mapping, Ramachandran 459—460 514 543 547 Marker atom 329—330 Markov chain 414—415 Markov models, hidden 536—537 538 Marsaglia random number generator 420 453—454 Mass-weighted coordinates 274—275 Mathematical concepts 10—24 Mathematical concepts, complex numbers 16—18 Mathematical concepts, multiple integrals 19—20 Mathematical concepts, series expansions 10—11 Mathematical concepts, statistics 20—21 (see also “Eigenvalues” “Fourier” “Lagrange” “Matrices” “Vectors”) Matrices 2—3 9 12—16 415 Matrices, adjacency 647 Matrices, charge density 58—59 Matrices, distance 652 Matrices, elastic constant 296—297 Matrices, PAM 524—526 531 556—557 Matrices, positive definite 16 258 Matrices, statistical weight 430 Matrices, stochastic 415 (see also “Fock matrix” “Hessian” “Z-matrix”) Maxima 273 Maximal segment pair 531—533 Maximum dissimilarity algorithms 683—684 Maximum likelihood method 657—658 MaxSum and MaxMin 683—684 685 Maxwell — Boltzmann distribution 365 367 384 Mayer bond order 83 Mc       see “Monte Carlo” MCSCF (multiconfiguration SCF) 113 MCSS (multiple-copy simultaneous search) 688 MDL (Molecular Design mol) format 643—644 Mean field approach 307—309 Mean square end-to-end distance, polymers 426 Mean squared displacement 322—323 Mechanics, molecular see “Force field” Mesoscale modelling 402—404 Messenger RNA (mRNA) 509 Met-enkephalin 517 Metals 147 589 607 626 649—650 693 Metals, force field potentials for 240—245 Methane, bond order 83 Methane, force fields 189 Methane, Monte Carlo simulation 441—442 Methane, octopole moment 76 Methane, population analysis 79 Methane, SMILES notation 644 Methanol 573 Methionine 511 525 556—555 Methyl chloride 612—63 614 676—667 Methylalanine 583—58 Methylene group 160 162 330 396 448 Methylene group, energy minimisation methods 280 291 Methylene group, force fields 181 221 Metric matrix 469 Metrisation 472 Metropolis Monte Carlo simulation 306 433 436 437 447 Metropolis Monte Carlo simulation, conformational analysis 467 505 Metropolis Monte Carlo simulation, implementation 417—420 Metropolis Monte Carlo simulation, new molecules 663 685 691 Metropolis Monte Carlo simulation, proteins 518 Metropolis Monte Carlo simulation, theoretical background 414—416 Microcanonical ensemble, definition 307 MINDO/3 86 94—96 102—103 Minima 272—273 Minimal basis set 69—70 Minimisation see “Energy minimisation” Minimum image convention and computer simulation 324—334 Mixing rules 210 MM2/MM3/MM4 programs 8 615 MM2/MM3/MM4 programs, force fields 169—171 173 176 179 187 211 233—234 MNDO (modified neglect of diatomic overlap) 86 96—97 98—99 102—103 192 MOD function 418—419 Modeller program 541 549 Modified INDO (MINDO/3) 86 94—96 102—103 Modified neglect see “MNDO” Molar refractivity 671 Molecular dynamics simulation 354—409 623 Molecular dynamics simulation of chain amphiphiles 394—404 Molecular dynamics simulation, computer simulation 305—306 307 Molecular dynamics simulation, conformational analysis 457 475—476 483—489 Molecular dynamics simulation, conformational changes from 392—393 Molecular dynamics simulation, constant pressure dynamics 385—387 Molecular dynamics simulation, constant temperature dynamics 382—385 Molecular dynamics simulation, constraint dynamics 368—374 Molecular dynamics simulation, continuous methods 355—364 Molecular dynamics simulation, energy conservation in 405—406 Molecular dynamics simulation, ensemble 653 Molecular dynamics simulation, free energy calculations 564 572 577 579 581 588 616—622 628 Molecular dynamics simulation, Monte Carlo compared with 307 387 452—453 Molecular dynamics simulation, new molecules 664 Molecular dynamics simulation, proteins 552 Molecular dynamics simulation, setting up and running 364—368 Molecular dynamics simulation, simple models 353—354 Molecular dynamics simulation, solvent effects 387—390 Molecular dynamics simulation, time-dependent properties 374—382 (see also “Computer simulation”) Molecular field analysis 708—711 Molecular fitting 490—491 Molecular fragments see “Fragments” Molecular modelling see “Advanced ab initio” “Computer concepts conformational “Energy force “Free “Molecular Monte new “Proteins” “Quantum Molecular orbital theories, semi-empirical 86 89—96 102—103 Molecular surface see “Surface” Moller — Plesset see “MP” Moments theorem 241—2 Monomers 289—290 423 550 Monomers, new molecules 712—713 717—718 Monte Carlo simulation 410—456 Monte Carlo simulation, bias 432—433 443—450 Monte Carlo simulation, chemical potential, calculating 442—443 Monte Carlo simulation, computer 306—307 Monte Carlo simulation, conformational analysis 457 475—476 479 483 504—505 Monte Carlo simulation, density functional theory 130 Monte Carlo simulation, different ensembles, sampling from 438—442 Monte Carlo simulation, force fields 189 Monte Carlo simulation, free energy calculations 564 577 579 588 Monte Carlo simulation, free energy calculations, chemical reactions 613 616 Monte Carlo simulation, free energy calculations, PMF 581—582 584 Monte Carlo simulation, free energy calculations, solid-state defects 623 628 Monte Carlo simulation, free energy calculations, thermodynamic perturbation 572—573 Monte Carlo simulation, Gibbs ensemble 450—451 Monte Carlo simulation, integration, calculating properties by 412—414 Monte Carlo simulation, molecular dynamics compared with 307 387 452—453 Monte Carlo simulation, molecules 420—423 Monte Carlo simulation, molecules, new 662—663 685 691 Monte Carlo simulation, polymers 423—431 Monte Carlo simulation, proteins 517—519 551 Monte Carlo simulation, quasi ergodicity 433—438 Monte Carlo simulation, random number generators 418—420 453—454 Metropolis”) Monte Carlo, configurational bias 443—450 Monte Carlo, force-bias 432 Monte Carlo, Grand canonical 440—442 Monte Carlo, smart 432 MOP AC program 8 99 Morgan algorithm 644 Morokuma analysis 122—124 Morse potential/curve 170—172 210 Motifs 522 Mott — Littleton method 623—624 625—627 MP (Moller — Plesset) perturbation theory 114 115—116 119 MR (molar refractivity) 671 MS (Murtaugh — Sargent) method 269—270 MSP (maximal segment pair) 531—533 Mthoxypromazine 678 Mulliken population analysis 79—80 189 Multicanonical Monte Carlo simulation 435—438 Multiconflguration SCF 113 Multiple integrals 19—20 Multiple linear regression 666 699 702 Multiple sequence alignment 534—537 Multiple-copy simultaneous search 688 Multipole, electric, calculation of 75—77 Multipole, fast 341—343 364 Multipole, models 195—197 219 Multivariate problems 708 Murtaugh — Sargent method 269—270 Mutation, operator 480 Mutation, probability matrices for proteins 556—557 N, N-dimethyl-ketopropanamide 230 naphthalene 233 NCC (Nieser — Corongiu — Clementi) model 219—220 NDDO (neglect of diatomic differential overlap) 86 93—94 95 96 Nearly free-electron approximation 142 147—153 Needleman — Wunsch algorithm 526—529 534 Neglect of differential overlap 86 89—96 Neighbour lists 325—327 493—496 Net (partial) atomic charges 157—159 181 Net dipole moment 378—379 Netropsin 270—271 Neural networks and QASR 703—705 New molecules 640—726 New molecules, 3D 674—675 687 New molecules, 3D, databases 659—661 679 New molecules, 3D, pharmacophores 648—659 674—675 687 New molecules, 3D, searching 645 647 667—668 New molecules, 3D, similarity 678—679 (see also “QSAR”) New molecules, combinatorial libraries 711—719 New molecules, computer representations 642—647 New molecules, de novo structure based ligand design 687—694 New molecules, descriptors 668—679 New molecules, discovery of drugs 640—641 New molecules, diverse sets of compounds, selecting 680—687 New molecules, docking 661—668 689 New molecules, partial least squares 702 706—711 New molecules, similarity 668 676—679 Newton — Raphson energy minimisation 267—268 270 288 625 Newton’s laws 304 309 353 366 371 Niching 481 Nickel oxide 147 Nicotine/nicotinic pharmacophore 653 678 Nitrogen 490 Nitrogen, amide 660 Nitrogen, basis sets 73 Nitrogen, bond order 83 Nitrogen, charge models 187—8 Nitrogen, distributed multipole model 196 Nitrogen, electrostatic potentials 188 Nitrogen, force fields 181 Nitrogen, substituents 693 NM23 547 NMR and X-ray crystallography 316 NMR and X-ray crystallography, conformational analysis 468 474—475 483—489 490 NMR and X-ray crystallography, molecular dynamics simulation 379 383 395 NMR and X-ray crystallography, new molecules 647 659 661 667 689 691 693 704 713 NMR and X-ray crystallography, proteins 516 522 546—547 552 512 514 Nodes on graphs 642—643 Nodes on search trees 461 NOESY (nuclear Overhauser enhancement spectroscopy) 474—475 486 488 Non-bonded cutoffs 324—334 Non-bonded interactions 166 181—212 324 Non-bonded interactions, cell multipole method for 341—343 Non-bonded interactions, electrostatic 166 181—204 Non-bonded interactions, neighbour lists 325—327 Non-bonded interactions, Van der Waals 166 204—212 Non-derivative energy minimisation 258—261 Non-electrostatic contributions to solvation free energy calculations 608—609 Non-holonormc constraints 370 Non-periodic boundary methods 320—321 Normal distribution see “Gaussian functions” Normal mode analysis and energy minimisation 273—278 Normal vibrational modes 274 Nuclear Overhauser see “NOESY” Nucleic acids 196—197 o-methylacetanilide 670 Octopole 76 181 One-electron atoms 30—34 One-electron integrals 50—51 ONIOM approach 615 Onsager dipole model 593—595 Open-shell systems 108—110 Operators 28—29 53 57 114 480—481 OPLS (optimised parameters for liquid simulations) 210 228 599 Orbital approximate theories 86 Orbital calculations, molecular 26 41—51 Orbital electronegativity 192—193 Orbital energy of closed-shell system 51 Orbital energy of general polyelectronic system 46—50 Orbital hydrogen 41—46 Orbital linear combination of atomic 41—42 56 100 241 Orbital one- and two-electron integrals 50—51 Orbital semi-empirical 86 89—96 102—103 Orbital semi-empirical, total electron density 77—79 (see also “STOs”) Orbital virtual 61 (see also “Kohn — Sham”) Orbital-based approach to band theory 142—146 Order of integration algorithm 358 Order, bond 81—83 Order, parameters 321—322 Orientational correlation 379—380 Orthogonalisation, symmetric 60 Orthonormal wavefunctions 30 Oscillating charge 201—202 Out-of-plane bending 176—178 Outside-in Hgand design 687—688 Overlap, differential 86 88—96 Overlap, forces see “Repulsive forces” Overlap, integral 52 Oxides 147 238 Oxygen bonds/interactions 98 237 328 620 652 Pairwise potential models 240—241 PAM matrices 524—526 531 556—557 Parameters 567 599 Parameters, force field 221 224—225 228—232 Parameters, substituent 695—697 (see also “Verlet”) Partial (net) atomic charges 157—159 181 Partial equalisation of orbital, electronegativity 192—193 Partial least squares (PLS) 702 706—711 Partition, coefficients 572—573 668—671 Partition, electron density 80—81 Partition, free energy 574—576 Partition/partitioning 683—685 Partitioning, coefficients 572—573 668—671 Partitioning, electron density 80—81 Partitioning, free energy 574—576 Pattern recognition 491—497 Pauli principle 206 PCA (principal components analysis) 497—499 681 686 
                            
                     
                  
			Ðåêëàìà