Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Leach A.R. — Molecular Modelling Principles and Applications
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Molecular Modelling Principles and Applications
Àâòîð: Leach A.R.
Àííîòàöèÿ: Preface to the Second Edition The impetus for this second edition is a desire to include some of the new techniques that have emerged in recent years and also extend the scope of the book to cover certain areas that were under-represented (even neglected) in the first edition. In this second volume there are three topics that fall into the first category (density functional theory, bioinformatics/protein structure analysis and chemoinformatics) and one main area in the second category (modelling of the solid state). In addition, of course, a new edition provides an opportunity to take a critical view of the text and to re-organise and update the material. Thus whilst much remains from the first edition, and this second book follows much the same path through the subject, readers familiar with the first edition will find some changes which I hope they will agree are for the better. As with the first edition we initially consider quantum mechanics, but this is now split into two chapters. Thus Chapter 2 provides an introduction to the ab initio and semi-empirical approaches together with some examples of the uses of quantum mechanics. Chapter 3 covers more advanced aspects of the ab initio approach, density functional theory and the particular problems of the solid state. Molecular mechanics is the subject of Chapter 4 and then in Chapter 5 we consider energy minimisation and other 'static' techniques. Chapters 6, 7 and 8 deal with the two main simulation methods (molecular dynamics and Monte Carlo). Chapter 9 is devoted to the conformational analysis of 'small' molecules but also includes some topics (e.g. cluster analysis, principal components analysis) that are widely used in informatics. In Chapter 10 the problems of protein structure prediction and protein folding are considered; this chapter also contains an introduction to some of the more widely used methods in bioinformatics. In Chapter 11 we draw upon material from the previous chapters in a discussion of free energy calculations, continuum solvent models, and methods for simulating chemical reactions and defects in solids. Finally, Chapter 12 is concerned with modelling and chemoinformatics techniques for discovering and designing new molecules, including database searching, docking, de novo design, quantitative structure-activity relationships and combinatorial library design. As in the first edition, the inexorable pace of change means that what is currently considered 'cutting edge' will soon become routine. The examples are thus chosen primarily because they illuminate the underlying theory rather than because they are the first application of a particular technique or are the most recent available. In a similar vein, it is impossible in a volume such as this to even attempt to cover everything and so there are undoubtedly areas which are under-represented. This is not intended to be a definitive historical account or a review of the current state-of-the-art. Thus, whilst I have tried to include many literature references it is possible that the invention of some technique may appear to be incorrectly attributed or a 'classic' application may be missing. A general guiding principle has been to focus on those techniques that are in widespread use rather than those which are the province of one particular research group. Despite these caveats I hope that the coverage is sufficient to provide a solid introduction to the main areas and also that those readers who are 'experts' will find something new to interest them.
ßçûê:
Ðóáðèêà: Õèìèÿ /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Èçäàíèå: 2-nd
Ãîä èçäàíèÿ: 2001
Êîëè÷åñòâî ñòðàíèö: 774
Äîáàâëåíà â êàòàëîã: 21.02.2007
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Force field models, empirical, angle bending 166 173
Force field models, empirical, bond stretching 166 170—173
Force field models, empirical, Class 1, 2 and 3 178—180
Force field models, empirical, cross terms 178—180
Force field models, empirical, derivatives of molecular mechanics energy function 225—226
Force field models, empirical, Drude molecules, interaction between 246—247
Force field models, empirical, effective pair potentials 214—215
Force field models, empirical, general features 168—170
Force field models, empirical, hydrogen bonding 215—216
Force field models, empirical, improper torsions and out-of-plane bending 176—178
Force field models, empirical, inorganic molecules 234—236
Force field models, empirical, many-body effects in empirical potentials 212—214
Force field models, empirical, metals and semiconductors 240—245
Force field models, empirical, parameters 221 224—225 228—232
Force field models, empirical, simple 165—166
Force field models, empirical, solid-state systems 236—240
Force field models, empirical, thermodynamic properties calculated using 226—228
Force field models, empirical, torsional terms 173—176
Force field models, empirical, united atom, reduced representations and 221—225
Force field models, empirical, water simulation 216—220 (see also “Non-bonded interactions”)
Force-bias Monte Carlo method 432—433
Formaldehyde 76—77 236
Formamide, electron density around 78—79 81—82
Formamide, gradient vector path 81
Formamide, HOMO and LUMO for 79
Forward sampling 567
Fourier, analysis 379 392—393
Fourier, coefficient 148—149
Fourier, series 21—23 155 235 237 392
Fourier, transform 22—24 392
Fractional factorial design 697
Fragments 472
Fragments, binding 689—691
Fragments, conformational analysis 464—465 472
Fragments, locating 687—689
Fragments, marking 715—717
Free energy calculations 563—639
Free energy calculations, chemical reactions 610—622
Free energy calculations, computer difficulties 563—564
Free energy calculations, enthalpy and entropy differences 574
Free energy calculations, linear response method 631—632
Free energy calculations, partitioning 574—576
Free energy calculations, pitfalls 577—570
Free energy calculations, potentials of mean force 580—585
Free energy calculations, rapid methods, approximate 585—592
Free energy calculations, solid-state defects 622—630 (see also “Differences free Helmholtz “Solvation”)
Freely rotating chain model 428—429
Frenkel defect 623 626
Friction coefficient 388—389
Frontier orbitals 293
Full configuration interaction 112
Full factorial design 697
Fullerenes 101
Functional genomics 512
future 160—161 718—719
G3 theory 116—117
GA see “Genetic algorithms”
Gap penalties 526—528
Gasteiger — Marsili approach 192—193
Gaussian functions/distribution 20—21
Gaussian functions/distribution, basis sets 65—73 passim 120 137 195
Gaussian functions/distribution, computer simulation 336—337 339
Gaussian functions/distribution, conformational analysis 481—482
Gaussian functions/distribution, density functional theory 131—132
Gaussian functions/distribution, force fields 195—196
Gaussian functions/distribution, Gaussian-3 (G3) theory 116—117
Gaussian functions/distribution, many-body perturbations 116—117
Gaussian functions/distribution, molecular dynamics simulation 365 381 384 389—390
Gaussian functions/distribution, new molecules 679 703
Gaussian functions/distribution, proteins 551
Gaussian functions/distribution, SCF 119
Gaussian functions/distribution, semi-empirical methods 92—98
Gaussian functions/distribution, solid state quantum mechanics 146
Gay — Berne potential 222—225
GB (generalised Born equation) 598—601
GB (generalised Born equation), surface area model (GB/SA) 609
Gear algorithm 358—359
General polyelectronic systems 38—41 46—50
Generalised coordination 370
Generalised valence bond 125
Generating Optimal Linear PLS Estimations 711
Generator matrices 429
Genetic algorithms, conformational analysis 479—482
Genetic algorithms, new molecules 653 663 691 701
Genomics 512 548—549
Geometry 658—659
Geometry, distance 467—475 476 651—653 663
Germanium 159—160 244
Gibbs ensemble Monte Carlo method 439 450—451
Gibbs free energy 563 569
Global energy minimum 253 458 479—483 551—552
Glutamic acid 510 525 556—557
Glutamine 510 525 556—557
Glycine 221 459 511 525 556—557
Go-Scheraga chain closure algorithm 541—542
Goal nodes 461
GOLD program 667
GOLPE (Generating Optimal Linear PLS Estimations) 711
Gradient, corrected functional 134—135
Gradient, exchange 135 136 137
Gradient, vector path 80—81
Grand canonical Monte Carlo simulations 440—442
Graphics, molecular 5—6
Graphite, adsorption 441—442
graphs 642—643 654
Green — Kubo formula 382
GRID program 215 687—688 708 711
Grid search 459 505
GROMOS program 330
Grotthuss mechanism 620
Group 14 elements 244
Group 14 elements, solid state quantum mechanics applied to 158—60 (see also “Carbon” “Germanium” “Silicon”)
Group average 493—494
Group-based cut-offs 327—330
Guanine 227
GVB (generalised valence bond) 125
Haemagglutinin 667
Haemerythrin 544
Halides 237 239 504 571
Halogenated hydrocarbons 707
Hamiltonian operator, advanced ab initio methods 114—115 120—121
Hamiltonian operator, computational quantum mechanics 27—29 30 32 36 42 46 53 90—92
Hamiltonian operator, computer simulation 312 313 410
Hamiltonian operator, force fields 246
Hamiltonian operator, free energy calculations 565 567—569 574 577—579 586 595—596 614
Hammett substituent parameter 695—697
Hamming (city block) distance 492 676—678
Hard-sphere model 353—354
Harmonic approximation 278
Harmonic potential see “Hooke’s law”
Hartree atomic unit 29
Hartree product 38—39
Hartree — Fock equations/theory 51—65 85
Hartree — Fock equations/theory, application 65
Hartree — Fock equations/theory, closed-shell 109
Hartree — Fock equations/theory, configuration interaction 112—113
Hartree — Fock equations/theory, density functional theory 126 128 129 135—137
Hartree — Fock equations/theory, free energy calculations 615—616
Hartree — Fock equations/theory, LCAO 56
Hartree — Fock equations/theory, many-body perturbation 114—115 116
Hartree — Fock equations/theory, RHF 108—110
Hartree — Fock equations/theory, SCF 75 87 119
Hartree — Fock equations/theory, Slater’s Rules 54—56
Hartree — Fock equations/theory, solid state quantum mechanics 146—147
Hartree — Fock equations/theory, two-electron integrals 19 (see also “Fock” “Roothaan “UHF”)
Hashed fingerprint 645—646 677 678 685
Heat bath, molecular dynamics 384
Heat capacity and computer simulation 308—309 348—349
Heitier — London model of hydrogen 124—125
Helium 36—38 39
Helium, hydrogen molecular ion ( ) 62—65
Helium, Slater determinant for 41
Helix 513—615 583 584
Hellmann — Feynman theorem 121
Helmholtz free energy 299—300 411 563—569
Helmholtz free energy, computer simulation 307 313—314
Hessian matrix 267—269 274—275 280 282—285 288
Heterovalent substituent 623
Heuristic searches and protein prediction 531—534
Hexane 449 462 463 672
Hexapeptide 482
HF 123 189 196
Hierarchical cluster analysis 494 534
High throughput screening (HTS) 641
High- superconductor 628—630
Hill potential 209
Histidine 169—170 510 525 556—557
HIV—1 protease 666 667 691—693
HMMs (Hidden Markov Models) 536—537 548
Hodgkin — Richards index 679
Hohnberg — Kohn theorem 128
Holonomic constraints 370
HOMO (highest occupied molecular orbit) 79 112 293—291
Hooke’s law 172—173 275 486
HP model 518—519
HTS (high throughput screening) 641
Huckel theory 99—102
Human genome project 512 548—549
Hunds rules 35
Hunter — Saunders approach 197—198
Hybrid Monte Carlo/molecular dynamics methods 452—453
Hydrodynamic vortex 377—378
Hydrogen 70
Hydrogen fluoride 620
Hydrogen, bonding 122—123 291—292 391 578 689
Hydrogen, bonding, bond order 83
Hydrogen, bonding, C-H bonds/interactions 98 167 180 211 233 236 362
Hydrogen, bonding, conformational analysis 490 504—505
Hydrogen, bonding, force fields 196 215—216 221 227—228
Hydrogen, bonding, new molecules 655 658
Hydrogen, bonding, O-H 98 620
Hydrogen, configuration interaction 112
Hydrogen, dissociation 109—110
Hydrogen, electron correlation 110—111
Hydrogen, energy minimisation methods 282—283 291—292
Hydrogen, fluoride 81—82
Hydrogen, Heitler — London model of 124—125
Hydrogen, molecule 41—46
Hydrogen, suppressed notation 644
Hydrophobic effect 515—517 518—519 669
Hysteresis 577
Iceberg model 516
ID3 algorithm 705
ILP (inductive logic programming) 705
Image charge computer simulation 340—341
Immunoglobulin 544
Immunosuppressant FK506 229—230
Importance sampling 410
Independent (random) samples 345
Indicator variable 696
INDO (intermediate neglect of differential overlap) 86 92—93 94—96
Inductive logic programming 705
Initial configuration, prior to simulation 315—316
Inorganic molecules, force fields for 234—236
Inorganic Structural Database 489
Inside-out ligand design 687—688
Integration, algorithms for molecular dynamics simulation 359—360
Integration, calculating properties by 412—414
Integration, thermodynamic 568—569 574 577 630—631
Intermediate neglect of differential overlap 86 92—93 94—96
Intermolecular processes and energy minimisation 278—279
Internal coordinates 2—4 257
Internet and World Wide Web 9—10 548 553
Interstitials 622—623 627
Intrinsic reaction coordinate 288—289
Inverse agonists 640
Inverse of matrix 15—16
Ionic solids, force fields for 238—240
Ionisation potentials 74—75
IRC (intrinsic reaction coordinate) 288—289
Iron, liquid 621—622
Isis system 645
Island model 481
Isodemic reactions 116
Isoleucine 511 525 556—557
Isomerism, subgraph 645
Isothermal-isobaric ensemble, definition 307 563 569
J-walking 533—535
Jahn — Teller effect 234
Jarvis — Patrick algorithm 496—497 683
JBW (jumping between wells) 435
Jellium 244
Jump frequency 627—628
Jumping between wells (JBW) 435
Kappa shape/kappa-alpha indices 672—674
Keys, pharmacophore 674—676
Kohn — Sham scheme/orbitals 128—129 131 132 134 135—137 156 157 616
Koopman’s theorem 74—75
Kronecker delta 30 396
kurtosis 680
Lag, ab initio molecular dynamics 618
Lagrange multiplier 18 52 127 191 371—372
Lags 453
Laguerre polynomials 31 55
Lambda dynamics 585—588
Langevin dipole method 601—603
Langevin equation 388—389 391 580 601—603 616
Langmuir — Blodgett films/layers 395 400—402
Large structures, reaction path for 289—292
Large systems, deriving charge models for 191—192
Latent variables 706
Lattices, models for proteins 518—520
Lattices, models of polymers 424—428
Lattices, solid state quantum mechanics 138—160 passim
Lattices, statics and dynamics in energy minimisation 295—300
LCAO (linear combination of atomic orbitals) 41—42 56 100 241
LDA/LSDA <focal (spin) density approximation) 130—131
Leap-frog algorithm 356—357
Least-squares approach 230—231
Leave-one-out 701
Lee — Yang-Parr see “BLYP”
Legendre polynomials 32
Length, units of 9
Lennard — Jones potential 253
Lennard — Jones potential, computer simulation 305 319 324 327 331—333 341—342
Lennard — Jones potential, force fields 167 207—310 212 214—216 225—226 237
Lennard — Jones potential, free energy calculations 579 586 613
Lennard — Jones potential, molecular dynamics simulation 361 368 402
Lennard — Jones potential, Monte Carlo simulation 428 439 441 448 450
LES (locally enhanced sampling) 575—576
Leucine 487 511 525 556—557
Levinthal paradox 550
Libraries, combinatorial 711—719
LIE (linear interaction energy) 588—589
Line search in one direction 262—263
Linear combination of atomic orbitals 41—42 56 100 241
Linear congruential method 418—419
Linear interaction energy 588—589
Linear potential, piecewise 665
Linear regression 666 698—699 702
Linear response 588—589 591 631—632
Linkage methods 493
Lipids 338
Lipids, simulation of 397—400
Liquid crystals 222—223
Literature 9
Lithium 111 238 323 626
Loadings 682
Local density approximation 130—131
Local spin DFT 129 135
Ðåêëàìà