Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Leach A.R. — Molecular Modelling Principles and Applications
Leach A.R. — Molecular Modelling Principles and Applications



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Molecular Modelling Principles and Applications

Àâòîð: Leach A.R.

Àííîòàöèÿ:

Preface to the Second Edition The impetus for this second edition is a desire to include some of the new techniques that have emerged in recent years and also extend the scope of the book to cover certain areas that were under-represented (even neglected) in the first edition. In this second volume there are three topics that fall into the first category (density functional theory, bioinformatics/protein structure analysis and chemoinformatics) and one main area in the second category (modelling of the solid state). In addition, of course, a new edition provides an opportunity to take a critical view of the text and to re-organise and update the material. Thus whilst much remains from the first edition, and this second book follows much the same path through the subject, readers familiar with the first edition will find some changes which I hope they will agree are for the better. As with the first edition we initially consider quantum mechanics, but this is now split into two chapters. Thus Chapter 2 provides an introduction to the ab initio and semi-empirical approaches together with some examples of the uses of quantum mechanics. Chapter 3 covers more advanced aspects of the ab initio approach, density functional theory and the particular problems of the solid state. Molecular mechanics is the subject of Chapter 4 and then in Chapter 5 we consider energy minimisation and other 'static' techniques. Chapters 6, 7 and 8 deal with the two main simulation methods (molecular dynamics and Monte Carlo). Chapter 9 is devoted to the conformational analysis of 'small' molecules but also includes some topics (e.g. cluster analysis, principal components analysis) that are widely used in informatics. In Chapter 10 the problems of protein structure prediction and protein folding are considered; this chapter also contains an introduction to some of the more widely used methods in bioinformatics. In Chapter 11 we draw upon material from the previous chapters in a discussion of free energy calculations, continuum solvent models, and methods for simulating chemical reactions and defects in solids. Finally, Chapter 12 is concerned with modelling and chemoinformatics techniques for discovering and designing new molecules, including database searching, docking, de novo design, quantitative structure-activity relationships and combinatorial library design. As in the first edition, the inexorable pace of change means that what is currently considered 'cutting edge' will soon become routine. The examples are thus chosen primarily because they illuminate the underlying theory rather than because they are the first application of a particular technique or are the most recent available. In a similar vein, it is impossible in a volume such as this to even attempt to cover everything and so there are undoubtedly areas which are under-represented. This is not intended to be a definitive historical account or a review of the current state-of-the-art. Thus, whilst I have tried to include many literature references it is possible that the invention of some technique may appear to be incorrectly attributed or a 'classic' application may be missing. A general guiding principle has been to focus on those techniques that are in widespread use rather than those which are the province of one particular research group. Despite these caveats I hope that the coverage is sufficient to provide a solid introduction to the main areas and also that those readers who are 'experts' will find something new to interest them.


ßçûê: en

Ðóáðèêà: Õèìèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 2-nd

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 774

Äîáàâëåíà â êàòàëîã: 21.02.2007

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Force field models, empirical, angle bending      166 173
Force field models, empirical, bond stretching      166 170—173
Force field models, empirical, Class 1, 2 and 3      178—180
Force field models, empirical, cross terms      178—180
Force field models, empirical, derivatives of molecular mechanics energy function      225—226
Force field models, empirical, Drude molecules, interaction between      246—247
Force field models, empirical, effective pair potentials      214—215
Force field models, empirical, general features      168—170
Force field models, empirical, hydrogen bonding      215—216
Force field models, empirical, improper torsions and out-of-plane bending      176—178
Force field models, empirical, inorganic molecules      234—236
Force field models, empirical, many-body effects in empirical potentials      212—214
Force field models, empirical, metals and semiconductors      240—245
Force field models, empirical, parameters      221 224—225 228—232
Force field models, empirical, simple      165—166
Force field models, empirical, solid-state systems      236—240
Force field models, empirical, thermodynamic properties calculated using      226—228
Force field models, empirical, torsional terms      173—176
Force field models, empirical, united atom, reduced representations and      221—225
Force field models, empirical, water simulation      216—220 (see also “Non-bonded interactions”)
Force-bias Monte Carlo method      432—433
Formaldehyde      76—77 236
Formamide, electron density around      78—79 81—82
Formamide, gradient vector path      81
Formamide, HOMO and LUMO for      79
Forward sampling      567
Fourier, analysis      379 392—393
Fourier, coefficient      148—149
Fourier, series      21—23 155 235 237 392
Fourier, transform      22—24 392
Fractional factorial design      697
Fragments      472
Fragments, binding      689—691
Fragments, conformational analysis      464—465 472
Fragments, locating      687—689
Fragments, marking      715—717
Free energy calculations      563—639
Free energy calculations, chemical reactions      610—622
Free energy calculations, computer difficulties      563—564
Free energy calculations, enthalpy and entropy differences      574
Free energy calculations, linear response method      631—632
Free energy calculations, partitioning      574—576
Free energy calculations, pitfalls      577—570
Free energy calculations, potentials of mean force      580—585
Free energy calculations, rapid methods, approximate      585—592
Free energy calculations, solid-state defects      622—630 (see also “Differences free Helmholtz “Solvation”)
Freely rotating chain model      428—429
Frenkel defect      623 626
Friction coefficient      388—389
Frontier orbitals      293
Full configuration interaction      112
Full factorial design      697
Fullerenes      101
Functional genomics      512
future      160—161 718—719
G3 theory      116—117
GA      see “Genetic algorithms”
Gap penalties      526—528
Gasteiger — Marsili approach      192—193
Gaussian functions/distribution      20—21
Gaussian functions/distribution, basis sets      65—73 passim 120 137 195
Gaussian functions/distribution, computer simulation      336—337 339
Gaussian functions/distribution, conformational analysis      481—482
Gaussian functions/distribution, density functional theory      131—132
Gaussian functions/distribution, force fields      195—196
Gaussian functions/distribution, Gaussian-3 (G3) theory      116—117
Gaussian functions/distribution, many-body perturbations      116—117
Gaussian functions/distribution, molecular dynamics simulation      365 381 384 389—390
Gaussian functions/distribution, new molecules      679 703
Gaussian functions/distribution, proteins      551
Gaussian functions/distribution, SCF      119
Gaussian functions/distribution, semi-empirical methods      92—98
Gaussian functions/distribution, solid state quantum mechanics      146
Gay — Berne potential      222—225
GB (generalised Born equation)      598—601
GB (generalised Born equation), surface area model (GB/SA)      609
Gear algorithm      358—359
General polyelectronic systems      38—41 46—50
Generalised coordination      370
Generalised valence bond      125
Generating Optimal Linear PLS Estimations      711
Generator matrices      429
Genetic algorithms, conformational analysis      479—482
Genetic algorithms, new molecules      653 663 691 701
Genomics      512 548—549
Geometry      658—659
Geometry, distance      467—475 476 651—653 663
Germanium      159—160 244
Gibbs ensemble Monte Carlo method      439 450—451
Gibbs free energy      563 569
Global energy minimum      253 458 479—483 551—552
Glutamic acid      510 525 556—557
Glutamine      510 525 556—557
Glycine      221 459 511 525 556—557
Go-Scheraga chain closure algorithm      541—542
Goal nodes      461
GOLD program      667
GOLPE (Generating Optimal Linear PLS Estimations)      711
Gradient, corrected functional      134—135
Gradient, exchange      135 136 137
Gradient, vector path      80—81
Grand canonical Monte Carlo simulations      440—442
Graphics, molecular      5—6
Graphite, adsorption      441—442
graphs      642—643 654
Green — Kubo formula      382
GRID program      215 687—688 708 711
Grid search      459 505
GROMOS program      330
Grotthuss mechanism      620
Group 14 elements      244
Group 14 elements, solid state quantum mechanics applied to      158—60 (see also “Carbon” “Germanium” “Silicon”)
Group average      493—494
Group-based cut-offs      327—330
Guanine      227
GVB (generalised valence bond)      125
Haemagglutinin      667
Haemerythrin      544
Halides      237 239 504 571
Halogenated hydrocarbons      707
Hamiltonian operator, advanced ab initio methods      114—115 120—121
Hamiltonian operator, computational quantum mechanics      27—29 30 32 36 42 46 53 90—92
Hamiltonian operator, computer simulation      312 313 410
Hamiltonian operator, force fields      246
Hamiltonian operator, free energy calculations      565 567—569 574 577—579 586 595—596 614
Hammett substituent parameter      695—697
Hamming (city block) distance      492 676—678
Hard-sphere model      353—354
Harmonic approximation      278
Harmonic potential      see “Hooke’s law”
Hartree atomic unit      29
Hartree product      38—39
Hartree — Fock equations/theory      51—65 85
Hartree — Fock equations/theory, application      65
Hartree — Fock equations/theory, closed-shell      109
Hartree — Fock equations/theory, configuration interaction      112—113
Hartree — Fock equations/theory, density functional theory      126 128 129 135—137
Hartree — Fock equations/theory, free energy calculations      615—616
Hartree — Fock equations/theory, LCAO      56
Hartree — Fock equations/theory, many-body perturbation      114—115 116
Hartree — Fock equations/theory, RHF      108—110
Hartree — Fock equations/theory, SCF      75 87 119
Hartree — Fock equations/theory, Slater’s Rules      54—56
Hartree — Fock equations/theory, solid state quantum mechanics      146—147
Hartree — Fock equations/theory, two-electron integrals      19 (see also “Fock” “Roothaan “UHF”)
Hashed fingerprint      645—646 677 678 685
Heat bath, molecular dynamics      384
Heat capacity and computer simulation      308—309 348—349
Heitier — London model of hydrogen      124—125
Helium      36—38 39
Helium, hydrogen molecular ion ($\mathrm{HeH}^+$)      62—65
Helium, Slater determinant for      41
Helix      513—615 583 584
Hellmann — Feynman theorem      121
Helmholtz free energy      299—300 411 563—569
Helmholtz free energy, computer simulation      307 313—314
Hessian matrix      267—269 274—275 280 282—285 288
Heterovalent substituent      623
Heuristic searches and protein prediction      531—534
Hexane      449 462 463 672
Hexapeptide      482
HF      123 189 196
Hierarchical cluster analysis      494 534
High throughput screening (HTS)      641
High-$T_c$ superconductor $\mathrm{YBa_2Cu_3O_{7-x}}$      628—630
Hill potential      209
Histidine      169—170 510 525 556—557
HIV—1 protease      666 667 691—693
HMMs (Hidden Markov Models)      536—537 548
Hodgkin — Richards index      679
Hohnberg — Kohn theorem      128
Holonomic constraints      370
HOMO (highest occupied molecular orbit)      79 112 293—291
Hooke’s law      172—173 275 486
HP model      518—519
HTS (high throughput screening)      641
Huckel theory      99—102
Human genome project      512 548—549
Hunds rules      35
Hunter — Saunders approach      197—198
Hybrid Monte Carlo/molecular dynamics methods      452—453
Hydrodynamic vortex      377—378
Hydrogen      70
Hydrogen fluoride      620
Hydrogen, bonding      122—123 291—292 391 578 689
Hydrogen, bonding, bond order      83
Hydrogen, bonding, C-H bonds/interactions      98 167 180 211 233 236 362
Hydrogen, bonding, conformational analysis      490 504—505
Hydrogen, bonding, force fields      196 215—216 221 227—228
Hydrogen, bonding, new molecules      655 658
Hydrogen, bonding, O-H      98 620
Hydrogen, configuration interaction      112
Hydrogen, dissociation      109—110
Hydrogen, electron correlation      110—111
Hydrogen, energy minimisation methods      282—283 291—292
Hydrogen, fluoride      81—82
Hydrogen, Heitler — London model of      124—125
Hydrogen, molecule      41—46
Hydrogen, suppressed notation      644
Hydrophobic effect      515—517 518—519 669
Hysteresis      577
Iceberg model      516
ID3 algorithm      705
ILP (inductive logic programming)      705
Image charge computer simulation      340—341
Immunoglobulin      544
Immunosuppressant FK506      229—230
Importance sampling      410
Independent (random) samples      345
Indicator variable      696
INDO (intermediate neglect of differential overlap)      86 92—93 94—96
Inductive logic programming      705
Initial configuration, prior to simulation      315—316
Inorganic molecules, force fields for      234—236
Inorganic Structural Database      489
Inside-out ligand design      687—688
Integration, algorithms for molecular dynamics simulation      359—360
Integration, calculating properties by      412—414
Integration, thermodynamic      568—569 574 577 630—631
Intermediate neglect of differential overlap      86 92—93 94—96
Intermolecular processes and energy minimisation      278—279
Internal coordinates      2—4 257
Internet and World Wide Web      9—10 548 553
Interstitials      622—623 627
Intrinsic reaction coordinate      288—289
Inverse agonists      640
Inverse of matrix      15—16
Ionic solids, force fields for      238—240
Ionisation potentials      74—75
IRC (intrinsic reaction coordinate)      288—289
Iron, liquid      621—622
Isis system      645
Island model      481
Isodemic reactions      116
Isoleucine      511 525 556—557
Isomerism, subgraph      645
Isothermal-isobaric ensemble, definition      307 563 569
J-walking      533—535
Jahn — Teller effect      234
Jarvis — Patrick algorithm      496—497 683
JBW (jumping between wells)      435
Jellium      244
Jump frequency      627—628
Jumping between wells (JBW)      435
Kappa shape/kappa-alpha indices      672—674
Keys, pharmacophore      674—676
Kohn — Sham scheme/orbitals      128—129 131 132 134 135—137 156 157 616
Koopman’s theorem      74—75
Kronecker delta      30 396
kurtosis      680
Lag, ab initio molecular dynamics      618
Lagrange multiplier      18 52 127 191 371—372
Lags      453
Laguerre polynomials      31 55
Lambda dynamics      585—588
Langevin dipole method      601—603
Langevin equation      388—389 391 580 601—603 616
Langmuir — Blodgett films/layers      395 400—402
Large structures, reaction path for      289—292
Large systems, deriving charge models for      191—192
Latent variables      706
Lattices, models for proteins      518—520
Lattices, models of polymers      424—428
Lattices, solid state quantum mechanics      138—160 passim
Lattices, statics and dynamics in energy minimisation      295—300
LCAO (linear combination of atomic orbitals)      41—42 56 100 241
LDA/LSDA <focal (spin) density approximation)      130—131
Leap-frog algorithm      356—357
Least-squares approach      230—231
Leave-one-out      701
Lee — Yang-Parr      see “BLYP”
Legendre polynomials      32
Length, units of      9
Lennard — Jones potential      253
Lennard — Jones potential, computer simulation      305 319 324 327 331—333 341—342
Lennard — Jones potential, force fields      167 207—310 212 214—216 225—226 237
Lennard — Jones potential, free energy calculations      579 586 613
Lennard — Jones potential, molecular dynamics simulation      361 368 402
Lennard — Jones potential, Monte Carlo simulation      428 439 441 448 450
LES (locally enhanced sampling)      575—576
Leucine      487 511 525 556—557
Levinthal paradox      550
Libraries, combinatorial      711—719
LIE (linear interaction energy)      588—589
Line search in one direction      262—263
Linear combination of atomic orbitals      41—42 56 100 241
Linear congruential method      418—419
Linear interaction energy      588—589
Linear potential, piecewise      665
Linear regression      666 698—699 702
Linear response      588—589 591 631—632
Linkage methods      493
Lipids      338
Lipids, simulation of      397—400
Liquid crystals      222—223
Literature      9
Lithium      111 238 323 626
Loadings      682
Local density approximation      130—131
Local spin DFT      129 135
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå