Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Leach A.R. — Molecular Modelling Principles and Applications
Leach A.R. — Molecular Modelling Principles and Applications



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Molecular Modelling Principles and Applications

Àâòîð: Leach A.R.

Àííîòàöèÿ:

Preface to the Second Edition The impetus for this second edition is a desire to include some of the new techniques that have emerged in recent years and also extend the scope of the book to cover certain areas that were under-represented (even neglected) in the first edition. In this second volume there are three topics that fall into the first category (density functional theory, bioinformatics/protein structure analysis and chemoinformatics) and one main area in the second category (modelling of the solid state). In addition, of course, a new edition provides an opportunity to take a critical view of the text and to re-organise and update the material. Thus whilst much remains from the first edition, and this second book follows much the same path through the subject, readers familiar with the first edition will find some changes which I hope they will agree are for the better. As with the first edition we initially consider quantum mechanics, but this is now split into two chapters. Thus Chapter 2 provides an introduction to the ab initio and semi-empirical approaches together with some examples of the uses of quantum mechanics. Chapter 3 covers more advanced aspects of the ab initio approach, density functional theory and the particular problems of the solid state. Molecular mechanics is the subject of Chapter 4 and then in Chapter 5 we consider energy minimisation and other 'static' techniques. Chapters 6, 7 and 8 deal with the two main simulation methods (molecular dynamics and Monte Carlo). Chapter 9 is devoted to the conformational analysis of 'small' molecules but also includes some topics (e.g. cluster analysis, principal components analysis) that are widely used in informatics. In Chapter 10 the problems of protein structure prediction and protein folding are considered; this chapter also contains an introduction to some of the more widely used methods in bioinformatics. In Chapter 11 we draw upon material from the previous chapters in a discussion of free energy calculations, continuum solvent models, and methods for simulating chemical reactions and defects in solids. Finally, Chapter 12 is concerned with modelling and chemoinformatics techniques for discovering and designing new molecules, including database searching, docking, de novo design, quantitative structure-activity relationships and combinatorial library design. As in the first edition, the inexorable pace of change means that what is currently considered 'cutting edge' will soon become routine. The examples are thus chosen primarily because they illuminate the underlying theory rather than because they are the first application of a particular technique or are the most recent available. In a similar vein, it is impossible in a volume such as this to even attempt to cover everything and so there are undoubtedly areas which are under-represented. This is not intended to be a definitive historical account or a review of the current state-of-the-art. Thus, whilst I have tried to include many literature references it is possible that the invention of some technique may appear to be incorrectly attributed or a 'classic' application may be missing. A general guiding principle has been to focus on those techniques that are in widespread use rather than those which are the province of one particular research group. Despite these caveats I hope that the coverage is sufficient to provide a solid introduction to the main areas and also that those readers who are 'experts' will find something new to interest them.


ßçûê: en

Ðóáðèêà: Õèìèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 2-nd

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 774

Äîáàâëåíà â êàòàëîã: 21.02.2007

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Conformational analysis, clustering algorithms and pattern recognition      491—497
Conformational analysis, conformational search      457 662
Conformational analysis, crystal structures predicted      501—505
Conformational analysis, dimensionality of data set reduced      497—499
Conformational analysis, distance geometry      467—475 476
Conformational analysis, fitting, molecular      490—491
Conformational analysis, global energy minimum      458 479—483
Conformational analysis, model-building      464—465
Conformational analysis, poling      499—501
Conformational analysis, random      465—467 476
Conformational analysis, structural databases      482 489—490 493—494 499
Conformational analysis, systematic      458—464 476 505
Conformational analysis, variations on standard methods      477—479
Conformational changes in molecular dynamics simulation      392—393
Conformationally flexible docking      662—663
CONGEN program      542
Conjugate gradients      262 264—267 473
Conjugate peak refinement      290—291
Connection table      643
Consistent force field (CFF)      231
Constraints, chiral      473—474
Constraints, holonomic versus non-holomonic      370
Constraints, holonomic versus non-holomonic and restraints, difference between      369—370
Constraints, holonomic versus non-holomonic in molecular dynamics      368—374
Constraints, holonomic versus non-holomonic, simulation      368—374
Constraints, holonomic versus non-holomonic, subset selection      717
Constraints, holonomic versus non-holomonic, systematic search      649—651
Contact surface      7
Continuum models and solvation, free energy of      592—593 598—601
Contraction, basis set      69
Convergence sphere      186
coordinates      2—4
Coordinates, internal      2—4 257
Coordinates, intrinsic reaction      288—289
Coordinates, mass-weighted      274—275
Coordinates, scaled      438—439 (see also “Cartesian coordinates”)
Corey — Pauling — Koltun (CPK) models      5—6
CORINA program      659
Correlation, BLYP      135 136 137
Correlation, coefficients      374 681
Correlation, electron      110—117
Correlation, exchange-correlation functional      129—134
Correlation, functions and molecular dynamics, simulation      374—380
Correlation, spectroscopy (COSY)      474—475 486
Cosine coefficient      676 685
COSMO (conductor-like screening model)      597
COSY (correlated spectroscopy)      474—475 486
Coulomb interaction/integral      598—599
Coulomb interaction/integral, advanced ab initio methods      122 127 128 132 133—134 146—147
Coulomb interaction/integral, computational quantum mechanics      30 42 45 49—53 58 60 85 100
Coulomb interaction/integral, force fields      184—185 187 194 202 238
Coulomb potential      167 244 338 341—342
Coulomb’s law      95 194 202 212 596 603—604 607
Counterpoise correction      121—122
Coupling parameter      567
Craig plot      681
Cross-correlation function      376
Crossover operator      480—481
Crystal momentum      148
Crystal structures, predicted      501—505
CSD (Cambridge Structural Database), conformational analysis      482 489 493—494 499
CSD (Cambridge Structural Database), new molecules      659 691 693
Cu-Zn superoxide dismutase      607
Cut-offs in computer simulation      324—327
Cut-offs in computer simulation, group-based      327—330
Cut-offs in computer simulation, problems with      330—334
Cyclic urea, HIV protease inhibitor      691—693
Cyclobutane      176—177
Cyclobutanone      176
Cyclobutene      117
Cycloheptadecane      476
Cyclohexane      286 463 465 497 597 644
Cyclopropene      117
Cyclosporin      196—197 391
Cysteine      511 525 556—557
Cytosine      84 227
D-Glucose      575
D-optimal design      697—698
databases      489 537 539
Databases, 3D      659—661 679 “Structural
Davidon — Fletcher — Powell method      269—270
de Broglie thermal wavelength      411 440—441
de novo ligand design      687—694
Degrees of freedom      699—700
Delocalised $\pi$-systems, force fields for      233—234
DelPhi program      604—605
Density, charge density matrix      58—59
Density, electron      77—79 80—2 160
Density, functional theory      126—137 156 619
Density, functional theory of levels      154
Density, spin      129—131
Density, spin of states and Fermi surface      153—155
Depth-first search      462 663
Derivative, energy, calculating      120—121
Derivative, energy, function      225—226
Derivative, energy, minimisation      257—258 261—262 268—269
Descriptors and new molecules      668—679
Determinant of matrix      13—14
DFP (Davidon — Fletcher — Powell) method      269—270
DFT (density functional theory)      126—137 156 619
DHFR (dihydrofolate reductase)      278—279 320 460
Diagonalisation of matrix      16
Diatomic overlap      see “MNDO”
Dick — Overhauser shell model      239
dielectric constant      297
Dielectric models      202—204
Diels — Alder reaction      294—295 615 716—717
Differences, free energy      564—574
Differences, free energy, applications of methods      569—574
Differences, free energy, formula for      568 630—631
Differences, free energy, methods for calculating      564—569
Differential overlap, neglect of      86 89—96
Differential overlap, zero (ZDU)      88—89 91
Dihedral angle, definition      4
Dihydrofolate reductase      278—279 320 460
DIIS (direct inversion of iterative subspace)      118
Dimensionality reduction      497—499
Dimethyl formamide      613—614
Dimethyl thioether      676—677
Dipole      75—77
Dipole correlation time      378—378
Dipole, force fields      181 182—185 189 199—201 219 246
Dipole, models of solvation, free energy of      593—595 601—603
Dipole, moment, net      378—379
Dipole, triple      213—215 239
Direct inversion of iterative subspace      118
Direct SCF method      118—120
Director      396
Discriminant analysis and QSAR      703—705
Dispersion curve      298—299
Dispersive interactions      204—206
Displacements      322—323 624
Dissimilarity-based methods      683—685
Dissipative particle dynamics      402—404
Distance, bounds      468
Distance, bounds, geometry      467—475 476 651—653 663
Distance, bounds, Hamming (city block)      492 676—678
Distance, bounds, map      651
Distance, bounds, matrix      652
Distance, bounds, Soergel      676—678
Distance-dependent dielectric      203
Distributed multipole analysis      195—197
Diverse sets of compounds, selecting      680—687
DMA (distributed multipole analysis)      195—197
DMF (dimethyl formamide)      613—614
DNA      197 227 452 489 604
DNA, computer simulation      319 338—339
DNA, Human Genome Project      512 548—549
DNA, inhibitor      270—271
DNA, new molecules      662
DNA, proteins      509 512 549
DOCK program/algorithm      662—663 665 667
docking      661—668 689
Domain      515
Double dynamic programming      537—539
Double zeta basis sets      70
Double-wide sampling      567—568
DPD (dissipative article dynamics)      402—404
Dreiding models      5—6
Drude molecules      205—206
Drude molecules, interaction between      246—247
Drugs, new      see “New molecules”
Dual topology      578
Dummy atoms, in Z-matrix      271—272
Dunning basis sets      73
Dynamic/ dynamics      353—409
Dynamically modified windows      578
Dynamically modified windows and statics in energy minimisation      295—300 (see also “Molecular dynamics”)
Dynamically modified windows, programming and protein prediction      526—529
EA (evolutionary algorithms)      479—483
Edges of search trees      461
Effective medium theory      243—241
Effective pair potentials      214—215
Eigenvalues and eigenvectors      15—16 114
Eigenvalues and eigenvectors, conformational analysis      469 471 479 498
Eigenvalues and eigenvectors, energy minimisation methods      272 282—285
Einstein relationships      381 627—628
Eisenberg’s 3D profiles      543—544
Elastic constants      240 296—297
Electric multrpoles, calculation of      75—77
Electron, affinity (EA)      194
Electron, correlation      110—117
Electron, density      77—79 80—82 160
Electron, gas theory      240
Electron, integrals, one- and two-      50—51
Electron, nearly free-electron approximation      147—153
Electron, polyelectronic atoms and molecules      34—41
Electron, spin      34—35 38
Electronegativity      192—193
Electrostatic interactions, force fields      166 181—204 221 237
Electrostatic interactions, free energy calculations      566—567 576 580 588 613
Electrostatic interactions, potentials      83—85 188 189—191
Electrostatic interactions, solvation free energy calculations      593—608
Electrotopological state index      674
Embedded-atom model      241 243—244
Embedding      469
Empirical bond-order potential      see “Tersoff”
Endothiapepsin      589—591
Energy minimisation methods      253—302 623
Energy minimisation methods, applications of      273—279
Energy minimisation methods, choice of      270—273
Energy minimisation methods, derivative      257—258 261—262 268—269
Energy minimisation methods, first-order      262—267
Energy minimisation methods, Newton — Raphson      267—268 270 288
Energy minimisation methods, non-derivative      258—261
Energy minimisation methods, quasi-Newton      268—269
Energy minimisation methods, solid-state systems      295—300
Energy minimisation methods, statement of problem      255—257
Energy minimisation methods, transition structures and reaction pathways      279—295
Energy of closed-shell system      51
Energy of general polyelectronic system      46—50
Energy, calculation from wavefunction      41—46
Energy, component analysis      122—124
Energy, computer simulation      308 348—349
Energy, conservation in molecular dynamics simulation      359 405—406
Energy, derivatives, calculating      120—121
Energy, force field      240
Energy, function, derivatives of      225—226
Energy, global minimum      253 458 479—483 551—552
Energy, Koopman’s theorem and iorusation potentials      74—75
Energy, lower-energy regions      564
Energy, minimum, global      253 458 479—483 551—552
Energy, potential      4—5 238 253
Energy, strain      226—7 627
Energy, surface (hypersurface)      4—5 253 475
Energy, units of      9 (see also “Derivative” “Energy “Free “Quantum
Enol boroate/aldehyde reaction      610—611
Ensemble, averages      303—305
Ensemble, distance geometry      651—653
Ensemble, molecular dynamics      653
Ensemble, Monte Carlo simulation      438—442 450—451
Enthalpy      159 574
entropy      574
Enumeration of libraries      715—717
Equilibration monitoring and computer simulation      321—323
Equilibria phases in computer simulation      315 450—451
Ergodicity      304 313
Ergodicity, quasi ergodicity      433—438
Error, estimating in a simulation      343—347
ESS (explained sum of squares)      699—700
Ethane, carbon-carbon bond      4—5
Ethane, force fields      174
Ethane, Monte Carlo simulation      441—442
Ethane, SMILES notation      644
Ethane, thiol      564—569
Ethane, torsion angles      286—287
Ethane, Z-matrix      2—3 9
Ethanol      564—569 611—612
Ethene      83 236 293—295
ethylene      621
Ethyne      83
Euclidean distance measure      492
Euler angles      421—422
Even-tempered basis set      71—72
Evolutionary algorithms      479—483
Evolutionary design      694
Evolutionary planning (EP) and strategies (ES)      479—480 482
Ewald summation      238 334—339 342 402 625—626
Exchange, correlation functional      129—134
Exchange, forces      see “Repulsive forces”
Exchange, gradient      135 136 137
Exchange, integral      50 52—53 58 60
Exchange, interaction      46
Exclusion spheres      658—659
Exons      512
Explained sum of squares      699—700
Extended Hiickel theory (EHT)      101—102
Extended system method      384
Extreme value distribution      532
Fabric softeners      401—402
Face-centred cubic lattice      139 316
Factor analysis      681—682 686
Factors (variables)      697
Family (proteins)      539
Fast Fourier Transform      24 338—339 342
Fast multipole method      341—343 364
FASTA      524 531
FDPB (finite difference Poisson — Boltzmann method)      604—608
Fermi surface and energy      153—155
Ferrocene      234
FFT (fast Fourier transform)      24 338—339 342
Fick’s laws      380—381
Finite difference methods      355—358 604—608
Finnis — Sinclair potential      241—245 passim
First principles method for predicting proteins      517—522
First-order energy minimisation      262—267
Fitting, molecular      490—491
Flexible fitting      491
Flexible molecules      423 582—585
FlexX program      667
Fock matrix      100
Fock matrix, Hartree — Fock equations      57—59 61 63—64
Fock matrix, open-shell systems      108—109
Fock matrix, semi-empirical methods      89—90 94 95 96
Fock matrix, solid state quantum mechanics      146
Fock operator      53 57 114
Focusing      606
Folding      see “Under proteins”
Force field models, empirical      165—252 610
Force field models, empirical, $\pi$ systems, delocalised      233—234
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå