Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Leach A.R. — Molecular Modelling Principles and Applications
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Molecular Modelling Principles and Applications
Àâòîð: Leach A.R.
Àííîòàöèÿ: Preface to the Second Edition The impetus for this second edition is a desire to include some of the new techniques that have emerged in recent years and also extend the scope of the book to cover certain areas that were under-represented (even neglected) in the first edition. In this second volume there are three topics that fall into the first category (density functional theory, bioinformatics/protein structure analysis and chemoinformatics) and one main area in the second category (modelling of the solid state). In addition, of course, a new edition provides an opportunity to take a critical view of the text and to re-organise and update the material. Thus whilst much remains from the first edition, and this second book follows much the same path through the subject, readers familiar with the first edition will find some changes which I hope they will agree are for the better. As with the first edition we initially consider quantum mechanics, but this is now split into two chapters. Thus Chapter 2 provides an introduction to the ab initio and semi-empirical approaches together with some examples of the uses of quantum mechanics. Chapter 3 covers more advanced aspects of the ab initio approach, density functional theory and the particular problems of the solid state. Molecular mechanics is the subject of Chapter 4 and then in Chapter 5 we consider energy minimisation and other 'static' techniques. Chapters 6, 7 and 8 deal with the two main simulation methods (molecular dynamics and Monte Carlo). Chapter 9 is devoted to the conformational analysis of 'small' molecules but also includes some topics (e.g. cluster analysis, principal components analysis) that are widely used in informatics. In Chapter 10 the problems of protein structure prediction and protein folding are considered; this chapter also contains an introduction to some of the more widely used methods in bioinformatics. In Chapter 11 we draw upon material from the previous chapters in a discussion of free energy calculations, continuum solvent models, and methods for simulating chemical reactions and defects in solids. Finally, Chapter 12 is concerned with modelling and chemoinformatics techniques for discovering and designing new molecules, including database searching, docking, de novo design, quantitative structure-activity relationships and combinatorial library design. As in the first edition, the inexorable pace of change means that what is currently considered 'cutting edge' will soon become routine. The examples are thus chosen primarily because they illuminate the underlying theory rather than because they are the first application of a particular technique or are the most recent available. In a similar vein, it is impossible in a volume such as this to even attempt to cover everything and so there are undoubtedly areas which are under-represented. This is not intended to be a definitive historical account or a review of the current state-of-the-art. Thus, whilst I have tried to include many literature references it is possible that the invention of some technique may appear to be incorrectly attributed or a 'classic' application may be missing. A general guiding principle has been to focus on those techniques that are in widespread use rather than those which are the province of one particular research group. Despite these caveats I hope that the coverage is sufficient to provide a solid introduction to the main areas and also that those readers who are 'experts' will find something new to interest them.
ßçûê:
Ðóáðèêà: Õèìèÿ /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Èçäàíèå: 2-nd
Ãîä èçäàíèÿ: 2001
Êîëè÷åñòâî ñòðàíèö: 774
Äîáàâëåíà â êàòàëîã: 21.02.2007
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Conformational analysis, clustering algorithms and pattern recognition 491—497
Conformational analysis, conformational search 457 662
Conformational analysis, crystal structures predicted 501—505
Conformational analysis, dimensionality of data set reduced 497—499
Conformational analysis, distance geometry 467—475 476
Conformational analysis, fitting, molecular 490—491
Conformational analysis, global energy minimum 458 479—483
Conformational analysis, model-building 464—465
Conformational analysis, poling 499—501
Conformational analysis, random 465—467 476
Conformational analysis, structural databases 482 489—490 493—494 499
Conformational analysis, systematic 458—464 476 505
Conformational analysis, variations on standard methods 477—479
Conformational changes in molecular dynamics simulation 392—393
Conformationally flexible docking 662—663
CONGEN program 542
Conjugate gradients 262 264—267 473
Conjugate peak refinement 290—291
Connection table 643
Consistent force field (CFF) 231
Constraints, chiral 473—474
Constraints, holonomic versus non-holomonic 370
Constraints, holonomic versus non-holomonic and restraints, difference between 369—370
Constraints, holonomic versus non-holomonic in molecular dynamics 368—374
Constraints, holonomic versus non-holomonic, simulation 368—374
Constraints, holonomic versus non-holomonic, subset selection 717
Constraints, holonomic versus non-holomonic, systematic search 649—651
Contact surface 7
Continuum models and solvation, free energy of 592—593 598—601
Contraction, basis set 69
Convergence sphere 186
coordinates 2—4
Coordinates, internal 2—4 257
Coordinates, intrinsic reaction 288—289
Coordinates, mass-weighted 274—275
Coordinates, scaled 438—439 (see also “Cartesian coordinates”)
Corey — Pauling — Koltun (CPK) models 5—6
CORINA program 659
Correlation, BLYP 135 136 137
Correlation, coefficients 374 681
Correlation, electron 110—117
Correlation, exchange-correlation functional 129—134
Correlation, functions and molecular dynamics, simulation 374—380
Correlation, spectroscopy (COSY) 474—475 486
Cosine coefficient 676 685
COSMO (conductor-like screening model) 597
COSY (correlated spectroscopy) 474—475 486
Coulomb interaction/integral 598—599
Coulomb interaction/integral, advanced ab initio methods 122 127 128 132 133—134 146—147
Coulomb interaction/integral, computational quantum mechanics 30 42 45 49—53 58 60 85 100
Coulomb interaction/integral, force fields 184—185 187 194 202 238
Coulomb potential 167 244 338 341—342
Coulomb’s law 95 194 202 212 596 603—604 607
Counterpoise correction 121—122
Coupling parameter 567
Craig plot 681
Cross-correlation function 376
Crossover operator 480—481
Crystal momentum 148
Crystal structures, predicted 501—505
CSD (Cambridge Structural Database), conformational analysis 482 489 493—494 499
CSD (Cambridge Structural Database), new molecules 659 691 693
Cu-Zn superoxide dismutase 607
Cut-offs in computer simulation 324—327
Cut-offs in computer simulation, group-based 327—330
Cut-offs in computer simulation, problems with 330—334
Cyclic urea, HIV protease inhibitor 691—693
Cyclobutane 176—177
Cyclobutanone 176
Cyclobutene 117
Cycloheptadecane 476
Cyclohexane 286 463 465 497 597 644
Cyclopropene 117
Cyclosporin 196—197 391
Cysteine 511 525 556—557
Cytosine 84 227
D-Glucose 575
D-optimal design 697—698
databases 489 537 539
Databases, 3D 659—661 679 “Structural
Davidon — Fletcher — Powell method 269—270
de Broglie thermal wavelength 411 440—441
de novo ligand design 687—694
Degrees of freedom 699—700
Delocalised -systems, force fields for 233—234
DelPhi program 604—605
Density, charge density matrix 58—59
Density, electron 77—79 80—2 160
Density, functional theory 126—137 156 619
Density, functional theory of levels 154
Density, spin 129—131
Density, spin of states and Fermi surface 153—155
Depth-first search 462 663
Derivative, energy, calculating 120—121
Derivative, energy, function 225—226
Derivative, energy, minimisation 257—258 261—262 268—269
Descriptors and new molecules 668—679
Determinant of matrix 13—14
DFP (Davidon — Fletcher — Powell) method 269—270
DFT (density functional theory) 126—137 156 619
DHFR (dihydrofolate reductase) 278—279 320 460
Diagonalisation of matrix 16
Diatomic overlap see “MNDO”
Dick — Overhauser shell model 239
dielectric constant 297
Dielectric models 202—204
Diels — Alder reaction 294—295 615 716—717
Differences, free energy 564—574
Differences, free energy, applications of methods 569—574
Differences, free energy, formula for 568 630—631
Differences, free energy, methods for calculating 564—569
Differential overlap, neglect of 86 89—96
Differential overlap, zero (ZDU) 88—89 91
Dihedral angle, definition 4
Dihydrofolate reductase 278—279 320 460
DIIS (direct inversion of iterative subspace) 118
Dimensionality reduction 497—499
Dimethyl formamide 613—614
Dimethyl thioether 676—677
Dipole 75—77
Dipole correlation time 378—378
Dipole, force fields 181 182—185 189 199—201 219 246
Dipole, models of solvation, free energy of 593—595 601—603
Dipole, moment, net 378—379
Dipole, triple 213—215 239
Direct inversion of iterative subspace 118
Direct SCF method 118—120
Director 396
Discriminant analysis and QSAR 703—705
Dispersion curve 298—299
Dispersive interactions 204—206
Displacements 322—323 624
Dissimilarity-based methods 683—685
Dissipative particle dynamics 402—404
Distance, bounds 468
Distance, bounds, geometry 467—475 476 651—653 663
Distance, bounds, Hamming (city block) 492 676—678
Distance, bounds, map 651
Distance, bounds, matrix 652
Distance, bounds, Soergel 676—678
Distance-dependent dielectric 203
Distributed multipole analysis 195—197
Diverse sets of compounds, selecting 680—687
DMA (distributed multipole analysis) 195—197
DMF (dimethyl formamide) 613—614
DNA 197 227 452 489 604
DNA, computer simulation 319 338—339
DNA, Human Genome Project 512 548—549
DNA, inhibitor 270—271
DNA, new molecules 662
DNA, proteins 509 512 549
DOCK program/algorithm 662—663 665 667
docking 661—668 689
Domain 515
Double dynamic programming 537—539
Double zeta basis sets 70
Double-wide sampling 567—568
DPD (dissipative article dynamics) 402—404
Dreiding models 5—6
Drude molecules 205—206
Drude molecules, interaction between 246—247
Drugs, new see “New molecules”
Dual topology 578
Dummy atoms, in Z-matrix 271—272
Dunning basis sets 73
Dynamic/ dynamics 353—409
Dynamically modified windows 578
Dynamically modified windows and statics in energy minimisation 295—300 (see also “Molecular dynamics”)
Dynamically modified windows, programming and protein prediction 526—529
EA (evolutionary algorithms) 479—483
Edges of search trees 461
Effective medium theory 243—241
Effective pair potentials 214—215
Eigenvalues and eigenvectors 15—16 114
Eigenvalues and eigenvectors, conformational analysis 469 471 479 498
Eigenvalues and eigenvectors, energy minimisation methods 272 282—285
Einstein relationships 381 627—628
Eisenberg’s 3D profiles 543—544
Elastic constants 240 296—297
Electric multrpoles, calculation of 75—77
Electron, affinity (EA) 194
Electron, correlation 110—117
Electron, density 77—79 80—82 160
Electron, gas theory 240
Electron, integrals, one- and two- 50—51
Electron, nearly free-electron approximation 147—153
Electron, polyelectronic atoms and molecules 34—41
Electron, spin 34—35 38
Electronegativity 192—193
Electrostatic interactions, force fields 166 181—204 221 237
Electrostatic interactions, free energy calculations 566—567 576 580 588 613
Electrostatic interactions, potentials 83—85 188 189—191
Electrostatic interactions, solvation free energy calculations 593—608
Electrotopological state index 674
Embedded-atom model 241 243—244
Embedding 469
Empirical bond-order potential see “Tersoff”
Endothiapepsin 589—591
Energy minimisation methods 253—302 623
Energy minimisation methods, applications of 273—279
Energy minimisation methods, choice of 270—273
Energy minimisation methods, derivative 257—258 261—262 268—269
Energy minimisation methods, first-order 262—267
Energy minimisation methods, Newton — Raphson 267—268 270 288
Energy minimisation methods, non-derivative 258—261
Energy minimisation methods, quasi-Newton 268—269
Energy minimisation methods, solid-state systems 295—300
Energy minimisation methods, statement of problem 255—257
Energy minimisation methods, transition structures and reaction pathways 279—295
Energy of closed-shell system 51
Energy of general polyelectronic system 46—50
Energy, calculation from wavefunction 41—46
Energy, component analysis 122—124
Energy, computer simulation 308 348—349
Energy, conservation in molecular dynamics simulation 359 405—406
Energy, derivatives, calculating 120—121
Energy, force field 240
Energy, function, derivatives of 225—226
Energy, global minimum 253 458 479—483 551—552
Energy, Koopman’s theorem and iorusation potentials 74—75
Energy, lower-energy regions 564
Energy, minimum, global 253 458 479—483 551—552
Energy, potential 4—5 238 253
Energy, strain 226—7 627
Energy, surface (hypersurface) 4—5 253 475
Energy, units of 9 (see also “Derivative” “Energy “Free “Quantum
Enol boroate/aldehyde reaction 610—611
Ensemble, averages 303—305
Ensemble, distance geometry 651—653
Ensemble, molecular dynamics 653
Ensemble, Monte Carlo simulation 438—442 450—451
Enthalpy 159 574
entropy 574
Enumeration of libraries 715—717
Equilibration monitoring and computer simulation 321—323
Equilibria phases in computer simulation 315 450—451
Ergodicity 304 313
Ergodicity, quasi ergodicity 433—438
Error, estimating in a simulation 343—347
ESS (explained sum of squares) 699—700
Ethane, carbon-carbon bond 4—5
Ethane, force fields 174
Ethane, Monte Carlo simulation 441—442
Ethane, SMILES notation 644
Ethane, thiol 564—569
Ethane, torsion angles 286—287
Ethane, Z-matrix 2—3 9
Ethanol 564—569 611—612
Ethene 83 236 293—295
ethylene 621
Ethyne 83
Euclidean distance measure 492
Euler angles 421—422
Even-tempered basis set 71—72
Evolutionary algorithms 479—483
Evolutionary design 694
Evolutionary planning (EP) and strategies (ES) 479—480 482
Ewald summation 238 334—339 342 402 625—626
Exchange, correlation functional 129—134
Exchange, forces see “Repulsive forces”
Exchange, gradient 135 136 137
Exchange, integral 50 52—53 58 60
Exchange, interaction 46
Exclusion spheres 658—659
Exons 512
Explained sum of squares 699—700
Extended Hiickel theory (EHT) 101—102
Extended system method 384
Extreme value distribution 532
Fabric softeners 401—402
Face-centred cubic lattice 139 316
Factor analysis 681—682 686
Factors (variables) 697
Family (proteins) 539
Fast Fourier Transform 24 338—339 342
Fast multipole method 341—343 364
FASTA 524 531
FDPB (finite difference Poisson — Boltzmann method) 604—608
Fermi surface and energy 153—155
Ferrocene 234
FFT (fast Fourier transform) 24 338—339 342
Fick’s laws 380—381
Finite difference methods 355—358 604—608
Finnis — Sinclair potential 241—245 passim
First principles method for predicting proteins 517—522
First-order energy minimisation 262—267
Fitting, molecular 490—491
Flexible fitting 491
Flexible molecules 423 582—585
FlexX program 667
Fock matrix 100
Fock matrix, Hartree — Fock equations 57—59 61 63—64
Fock matrix, open-shell systems 108—109
Fock matrix, semi-empirical methods 89—90 94 95 96
Fock matrix, solid state quantum mechanics 146
Fock operator 53 57 114
Focusing 606
Folding see “Under proteins”
Force field models, empirical 165—252 610
Force field models, empirical, systems, delocalised 233—234
Ðåêëàìà