Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Leach A.R. — Molecular Modelling Principles and Applications
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Molecular Modelling Principles and Applications
Àâòîð: Leach A.R.
Àííîòàöèÿ: Preface to the Second Edition The impetus for this second edition is a desire to include some of the new techniques that have emerged in recent years and also extend the scope of the book to cover certain areas that were under-represented (even neglected) in the first edition. In this second volume there are three topics that fall into the first category (density functional theory, bioinformatics/protein structure analysis and chemoinformatics) and one main area in the second category (modelling of the solid state). In addition, of course, a new edition provides an opportunity to take a critical view of the text and to re-organise and update the material. Thus whilst much remains from the first edition, and this second book follows much the same path through the subject, readers familiar with the first edition will find some changes which I hope they will agree are for the better. As with the first edition we initially consider quantum mechanics, but this is now split into two chapters. Thus Chapter 2 provides an introduction to the ab initio and semi-empirical approaches together with some examples of the uses of quantum mechanics. Chapter 3 covers more advanced aspects of the ab initio approach, density functional theory and the particular problems of the solid state. Molecular mechanics is the subject of Chapter 4 and then in Chapter 5 we consider energy minimisation and other 'static' techniques. Chapters 6, 7 and 8 deal with the two main simulation methods (molecular dynamics and Monte Carlo). Chapter 9 is devoted to the conformational analysis of 'small' molecules but also includes some topics (e.g. cluster analysis, principal components analysis) that are widely used in informatics. In Chapter 10 the problems of protein structure prediction and protein folding are considered; this chapter also contains an introduction to some of the more widely used methods in bioinformatics. In Chapter 11 we draw upon material from the previous chapters in a discussion of free energy calculations, continuum solvent models, and methods for simulating chemical reactions and defects in solids. Finally, Chapter 12 is concerned with modelling and chemoinformatics techniques for discovering and designing new molecules, including database searching, docking, de novo design, quantitative structure-activity relationships and combinatorial library design. As in the first edition, the inexorable pace of change means that what is currently considered 'cutting edge' will soon become routine. The examples are thus chosen primarily because they illuminate the underlying theory rather than because they are the first application of a particular technique or are the most recent available. In a similar vein, it is impossible in a volume such as this to even attempt to cover everything and so there are undoubtedly areas which are under-represented. This is not intended to be a definitive historical account or a review of the current state-of-the-art. Thus, whilst I have tried to include many literature references it is possible that the invention of some technique may appear to be incorrectly attributed or a 'classic' application may be missing. A general guiding principle has been to focus on those techniques that are in widespread use rather than those which are the province of one particular research group. Despite these caveats I hope that the coverage is sufficient to provide a solid introduction to the main areas and also that those readers who are 'experts' will find something new to interest them.
ßçûê:
Ðóáðèêà: Õèìèÿ /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Èçäàíèå: 2-nd
Ãîä èçäàíèÿ: 2001
Êîëè÷åñòâî ñòðàíèö: 774
Äîáàâëåíà â êàòàëîã: 21.02.2007
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
PCM (polarisable continuum method) 596—597 598
PDB (Protein Databank) 489—490 539
Pdf (probability density function) 304 541
Pearson correlation coefficient 681
Penalty functions 483
Pentane 253 430 462 582
Pepsin 545
Peptides/polypeptides 277 423 509 515 517—518 520 691
Peptides/polypeptides, conformational analysis 459 482
Peptides/polypeptides, dynamic programming 527—528
Peptides/polypeptides, folding 552
Peptides/polypeptides, force fields 196—197 221 231
Peptides/polypeptides, free energy calculations 571 583—584
Peptides/polypeptides, loop conformations 541—542
Peptides/polypeptides, peptoids 713
Peptides/polypeptides, ‘threading’ 546 (see also “Amino acids” “Proteins”)
Percentage sequence identity 524
Pericyclic reactions transition structures 292—295
Periodic boundary conditions 317—319
Perturbation and free energy 566—568 573—574 582 584 595
Perturbation and free energy, thermodynamic 564—566 569—573 577 592
Perturbation theories 36 114—117 119
Pharmacophore, keys 674—676
Pharmacophore, mapping 648
Pharmacophores 647 (see also “New molecules”)
Phase equilibria, simulation of 450—451
Phase problem, in X-ray crystallography 484
Phase space and computer simulation 312—315
Phenylalanine 169 286 511 525 542 546 556—557
Phonons and dispersion curve 298—299
Pivot algorithm 423
Plane waves 155—156
PLS (partial least squares) 702 706—711
PM3 98—99 102
PMF (potentials of mean force) 387—390 546 580—585 612—14
Point defect 622
Point-charge electrostatic models 187
Poisson equation 133
Poisson — Boltzmann equation 603—608
Polarisation/polarisable basis functions 71
Polarisation/polarisable basis functions, continuum method 596—597 598
Polarisation/polarisable basis functions, electrostatic non-bonded interactions 199—202 203
Polarisation/polarisable basis functions, energy component analysis 122
Polarisation/polarisable basis functions, force field models for simulation of water 218—219
Poling and conformational analysis 499—501
Polyatomic systems 210—212
Polyelectronic atoms and molecules 34—41
Polymers, energy minimisation methods 289—290
Polymers, free energy calculations 621 622
Polymers, molecular dynamics simulation 391 404 550 551
Polymers, Monte Carlo simulation of 423—431 (see also “Amino acids” “Peptides” “Proteins”)
Population Analysis 79—80 189
Porphyrins 197—198
Positive definite matrix 16 268
Potential 156—157 275 486 546
Potential of mean force see “PMF”
Potential, computational quantum mechanics 74—75 83—85
Potential, computer simulation 305 319 324—334 338 341—342
Potential, electrostatic 83—85
Potential, energy 4—5 238 253
Potential, force fields 167 170—173 188—192 207—210 212—217 222—226 237—238 240—245
Potential, free energy calculations 549 579 580—585 586 612—614
Potential, ionisation 74—75
Potential, models, pairwise 240—241
Potential, molecular dynamics simulation 387—390
Potential, Monte Carlo simulation 442—443
Potential, new molecules 665 666
Potential, prediction of crystal structures 501—505
Potential, predictive residual sum of squares 701
Potential, predictor-corrector methods of molecular dynamics simulation 358—359 (see also under “Proteins”)
Preferential sampling 432
PRESS (predictive residual sum of squares) 701
Pressure 309 385—387
Principal components analysis see “PCA”
Principal components regression 706
Probability density function 304 541
Probability matrices for proteins 556—557
Product-based monomer selection 718
Production phase in simulation 315
Profile 535
Proline 221 511 525 556—557
PROMET 502—503
Propane 167 644
Proteins 6 423
Proteins, computer simulation 329—330 338—339
Proteins, conformational analysis 475 489—490
Proteins, force fields 192 221
Proteins, free energy calculations 571
Proteins, predicting structure of 509—562
Proteins, predicting structure of, acronyms and abbreviations 553—554
Proteins, predicting structure of, basic principles 513—517
Proteins, predicting structure of, comparative model 539—545
Proteins, predicting structure of, comparison of methods 547—549
Proteins, predicting structure of, databases, list of 555
Proteins, predicting structure of, first principles methods 517—522
Proteins, predicting structure of, folding and unfolding 512 516—517 539 545—547 549—553
Proteins, predicting structure of, mutation probability matrices 556—557
Proteins, predicting structure of, sequence alignment 522—539
Proteins, predicting structure of, threading 545—547
Proteins, Protein Databank 489—490 539 “Peptides”)
Pseudo-acyclic molecules 463—464
Pseudopotentials 156—157
Pyrazine, 2—pyridone 597—598
Pyrazine/pyridine 573
Pyridine, 2—pyridone 597—598
QCISD (quadratic CISD) 113 117 119
QSAR (quantitative structure-activity relationships) 695—706 710 711
QSAR (quantitative structure-activity relationships), cross-validation 701
QSAR (quantitative structure-activity relationships), deriving equation 698—770
QSAR (quantitative structure-activity relationships), discriminant analysis 703—705
QSAR (quantitative structure-activity relationships), interpreting equation 702
QSAR (quantitative structure-activity relationships), neural networks 703—705
QSAR (quantitative structure-activity relationships), principal components regression 706
QSAR (quantitative structure-activity relationships), property relationship 695 702
QSAR (quantitative structure-activity relationships), selecting compounds for analysis 697—698
QSPR (quantitative structure-property relationship) 695 702
Quadratic region 283—284
Quadrupole 76 181 183 185—186 196
Quantitative structure-activity see “QSAR”
Quantum mechanics and molecular mechanics combined in chemical reactions 614—616
Quantum mechanics, future role 160—161
Quantum mechanics, solvation, free energy of 594—598 (see also ab initio ”Quantum mechanics” “Advanced computational
Quasi ergodicity and Monte Carlo, simulation 433—438
Quasi-Newton energy minimisation 268—269
Quaternions 422
R groups 716—717
r-RESPA (reversible reference system propagation algorithm) 363—364
Radial distribution functions and computer simulation 310—312
Ramachandran map 459—460 514 543 547
Random number generators 418—420 453—454
Random sampling 345—347
Random search 465—467 476 517—518
Random tweak 542
Range scaling 681
Ranitidine 489 644
RANTES 475
Rapid free energy calculations, approximate 585—592
Rappe — Goddard method 193—194
RATTLE method 373—374
Rayleigh — Schrodinger perturbation theory 114
Re-entrant surface 7
Reaction, field 339—340 595—596 597
Reaction, isodemic 116
Reaction, pathways 279—295
Reaction, transform 715—716
Reaction, zone 320—321 (see also “Chemical reactions”)
Real gas contribution to virial 309 349—350
Reciprocal lattice 139—140
Recombination operator 480—481
Reduced units, in non-bonded interactions 212
Refractivity, molar 671
Regression 706
Regression, equation 698—699
Regression, linear 666 698—699 702
Relative energies 226
Relaxation time 376
Reptation 427
Repulsive forces 206 (see also “Coulomb attraction/repulsion”)
Residual sum of squares 699—700
RESP (restrained electrostatic potential fit) 191—192
Response 697
Restraints/restrained and constraints, difference between 369—370
Restraints/restrained, electrostatic potential fit 191—192
Restraints/restrained, molecular dynamics 483—484
Restraints/restrained, spatial, satisfaction of 540—541
Reversible reference system 363—364
RHF (spin-restricted Hartree — Fock theory) 108—110
Ribose phosphate 493—494
Rigid molecules, simulation of 420—422
Rigid-body method 540
Ring critical point 81
RIS (rotational isomeric state) model 429—431
RMS (root-mean-square) 273 359—360 552 667
RMSD (root-mean-square-distance) 491—493
RNA 509 512
root nodes 461
Root-mean-square 273 359—360 552 667
Roothaan — Hall equations, closed-shell systems 56—59 86—88
Roothaan — Hall equations, density functional theory 132
Roothaan — Hall equations, illustrated 62—5
Roothaan — Hall equations, solving 59—62
Rosenbluth weight 444—447
Rotational isomeric state 429—431
Rotational order 322
Roulette wheel selection 480
RSS (residual sum of squares) 699—700
Rule-based approaches to protein prediction 520—522
Saddle points 253 272—273 280 282—283 291
Saddle points, location 285—288 478
Saddle points, quadratic region 283—284
SAM1 (Semi-Ab-initio Model 1) 99 102
Sampling 345 346—347 410 432 438—442 567—568 575—576
SC24/halide system 571
Scalar product and triple product 12 14
Scaling/scaled, autoscaling 681
Scaling/scaled, coordinates 438—439
Scaling/scaled, mesoscale modelling 402—404
Scaling/scaled, particle theory 609
Scaling/scaled, range 681
SCF (self-consistent field) 117 280
SCF (self-consistent field), complete active-space 113 295
SCF (self-consistent field), computational quantum mechanics 54 64 73 75 87
SCF (self-consistent field), direct method 118—120
SCF (self-consistent field), energy component analysis 122
SCF (self-consistent field), free energy calculations 595—596 597
SCF (self-consistent field), Hartree — Fock 75 87 119
SCF (self-consistent field), multiconfiguration 113
Schottky defect 622—623 626
Schrodinger equations and solutions for Drude molecules 205 246—247
Schrodinger equations and solutions to computational quantum mechanics 27—28 29—30 32 34—37 128
Schrodinger equations and solutions to computer simulation 347—348
Schrodinger equations and solutions to density functional theory 127 128
Schrodinger equations and solutions to solid state quantum mechanics 147 148
SCOP (Structural Classification of Proteins) 539
Scoring functions for docking 664—667
SCRF (self-consistent reaction field) 595—596 597
SCRs (structurally conserved regions) 539—540
SDEP measure 709
Search, depth-first 462 663
Search, grid 459 505
Search, heuristic 531—534
Search, line 262—263
Search, low-mode 478—479
Search, multiple-copy 688
Search, new molecules (3D) 645 647 667—668
Search, random 465—467 476 517—518
Search, systematic 458—464 476 505
Search, trees 461—465 (see also under “Conformational analysis”)
Second-moment approximation 242
Secondary structure of proteins 513
Segment matching 540
Self-consistent field see “SCF” “SCRF”
Self-penalty walk (SPW) 289—290 584
Semi-Ab-initio Model 1 (SAM1) 99 102
Semi-empirical methods of computational quantum mechanics 65 86—99 102—103
Semi-empirical molecular orbital theories 86 89—96 102—103
Semiconductors, force field potentials for 244—245
Separation of variables 36—37
Sequence alignment of proteins 522—539
Sequence identity 546—547
Sequential univariate minimisation 260—261
Series expansions 10—11
Serine 511 525 556—557
SHAKE procedure 369—374 582 618
Shape arastropy parameter 224—225
SHAPES force field 235—237
Shear viscosity 381
Shielding constant 55—56
Shifted potential 330—331
Shorthand representation of electron integrals 50
Sigmoidal dielectric model 202—204
Silica 297—298
Silicalite 449—450
Silicon 483 693
Silicon and chlorine 620—621
Silicon, force fields 237 245
Silicon, O bond 237
Silicon, phases of 159—160
Silicon, shielding constant 55—56
Silicon, valence electron density 160
Similarity and 3D properties 678—679
Similarity, calculating 676—678
Similarity, searching 668
Simple force field models for simulation of water 216—218
Simplex method of non-derivative energy, minimisation 258—260
Simpson’s rule 412—413
Simulated annealing in ab initio molecular dynamics 616—618
Simulated annealing in conformational analysis 483
Simulated annealing in X-ray refinement 484—486
Simulations see “Computer simulation” “Conformational “Molecular “Monte
SINDOl program 99
Single-linkage cluster algorithm 493—496
Site points 689
skewness 680
Slater determinants, density functional theory 135 136
Slater determinants, general polyelectromc systems 38—41
Slater determinants, many-body perturbation 115
Slater determinants, orbitals see “STOs”
Slater determinants, Slater’s Rules and Hartree — Fock equations 54—56
Slater functions and basis sets 67—69
Slow growth free energy calculations 568—569 577 631
Smart Monte Carlo method 432—433
Smart Region Definition 710—711
SMILES notation 643—645 715
Smith — Waterman algorithm 529—530
Sodium 181 589 626
Sodium chloride 238
Soergel distance 676—678
Solid-state, defects and free energy calculations 622—630
Solid-state, energy minimisation methods 295—300
Solid-state, force fields for 236—240
Solid-state, quantum mechanical methods for studying 138—160
Solvation/solvents 320
Solvation/solvents, dielectric models of electrostatic non-bonded interactions 202—204
Solvation/solvents, free energy of 576 592—610
Solvation/solvents, free energy of, continuum models 592—593 598—601
Solvation/solvents, free energy of, electrostatic contributions 593—608
Solvation/solvents, free energy of, non-electrostatic contributions 608—609
Solvation/solvents, free energy of, simple models 609—10
Solvation/solvents, molecular dynamics simulation 387—390
Ðåêëàìà