Àâòîðèçàöèÿ 
		         
		        
					
 
		          
		        
			          
		        
			        Ïîèñê ïî óêàçàòåëÿì 
		         
		        
			        
					 
		          
		        
			          
			
			         
       		 
			          
                
                    
                        
                     
                  
		
			          
		        
			          
		
            
	     
	    
	    
            
		
                    Leach A.R. — Molecular Modelling Principles and Applications 
                  
                
                    
                        
                            
                                
                                    Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå    Íàøëè îïå÷àòêó? 
 
                                
                                    Íàçâàíèå:   Molecular Modelling Principles and ApplicationsÀâòîð:   Leach A.R.  Àííîòàöèÿ:  Preface to the Second Edition The impetus for this second edition is a desire to include some of the new techniques that have emerged in recent years and also extend the scope of the book to cover certain areas that were under-represented (even neglected) in the first edition. In this second volume there are three topics that fall into the first category (density functional theory, bioinformatics/protein structure analysis and chemoinformatics) and one main area in the second category (modelling of the solid state). In addition, of course, a new edition provides an opportunity to take a critical view of the text and to re-organise and update the material. Thus whilst much remains from the first edition, and this second book follows much the same path through the subject, readers familiar with the first edition will find some changes which I hope they will agree are for the better. As with the first edition we initially consider quantum mechanics, but this is now split into two chapters. Thus Chapter 2 provides an introduction to the ab initio and semi-empirical approaches together with some examples of the uses of quantum mechanics. Chapter 3 covers more advanced aspects of the ab initio approach, density functional theory and the particular problems of the solid state. Molecular mechanics is the subject of Chapter 4 and then in Chapter 5 we consider energy minimisation and other 'static' techniques. Chapters 6, 7 and 8 deal with the two main simulation methods (molecular dynamics and Monte Carlo). Chapter 9 is devoted to the conformational analysis of 'small' molecules but also includes some topics (e.g. cluster analysis, principal components analysis) that are widely used in informatics. In Chapter 10 the problems of protein structure prediction and protein folding are considered; this chapter also contains an introduction to some of the more widely used methods in bioinformatics. In Chapter 11 we draw upon material from the previous chapters in a discussion of free energy calculations, continuum solvent models, and methods for simulating chemical reactions and defects in solids. Finally, Chapter 12 is concerned with modelling and chemoinformatics techniques for discovering and designing new molecules, including database searching, docking, de novo design, quantitative structure-activity relationships and combinatorial library design. As in the first edition, the inexorable pace of change means that what is currently considered 'cutting edge' will soon become routine. The examples are thus chosen primarily because they illuminate the underlying theory rather than because they are the first application of a particular technique or are the most recent available. In a similar vein, it is impossible in a volume such as this to even attempt to cover everything and so there are undoubtedly areas which are under-represented. This is not intended to be a definitive historical account or a review of the current state-of-the-art. Thus, whilst I have tried to include many literature references it is possible that the invention of some technique may appear to be incorrectly attributed or a 'classic' application may be missing. A general guiding principle has been to focus on those techniques that are in widespread use rather than those which are the province of one particular research group. Despite these caveats I hope that the coverage is sufficient to provide a solid introduction to the main areas and also that those readers who are 'experts' will find something new to interest them.
ßçûê:  Ðóáðèêà:  Õèìèÿ /Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ:  Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö ed2k:   ed2k stats Èçäàíèå:  2-ndÃîä èçäàíèÿ:  2001Êîëè÷åñòâî ñòðàíèö:  774Äîáàâëåíà â êàòàëîã:  21.02.2007Îïåðàöèè:  Ïîëîæèòü íà ïîëêó  |
	 
	Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà  | Ñêîïèðîâàòü ID 
                                 
                             
                        
                     
                 
                                                                
			          
                
                    Ïðåäìåòíûé óêàçàòåëü 
                  
                
                    
                        PCM (polarisable continuum method) 596—597 598 PDB (Protein Databank) 489—490 539 Pdf (probability density function) 304 541 Pearson correlation coefficient 681 Penalty functions 483 Pentane 253 430 462 582 Pepsin 545 Peptides/polypeptides 277 423 509 515 517—518 520 691 Peptides/polypeptides, conformational analysis 459 482 Peptides/polypeptides, dynamic programming 527—528 Peptides/polypeptides, folding 552 Peptides/polypeptides, force fields 196—197 221 231 Peptides/polypeptides, free energy calculations 571 583—584 Peptides/polypeptides, loop conformations 541—542 Peptides/polypeptides, peptoids 713 Peptides/polypeptides, ‘threading’ 546 (see also “Amino acids” “Proteins”) Percentage sequence identity 524 Pericyclic reactions transition structures 292—295 Periodic boundary conditions 317—319 Perturbation and free energy 566—568 573—574 582 584 595 Perturbation and free energy, thermodynamic 564—566 569—573 577 592 Perturbation theories 36 114—117 119 Pharmacophore, keys 674—676 Pharmacophore, mapping 648 Pharmacophores 647 (see also “New molecules”) Phase equilibria, simulation of 450—451 Phase problem, in X-ray crystallography 484 Phase space and computer simulation 312—315 Phenylalanine 169 286 511 525 542 546 556—557 Phonons and dispersion curve 298—299 Pivot algorithm 423 Plane waves 155—156 PLS (partial least squares) 702 706—711 PM3 98—99 102 PMF (potentials of mean force) 387—390 546 580—585 612—14 Point defect 622 Point-charge electrostatic models 187 Poisson equation 133 Poisson — Boltzmann equation 603—608 Polarisation/polarisable basis functions 71 Polarisation/polarisable basis functions, continuum method 596—597 598 Polarisation/polarisable basis functions, electrostatic non-bonded interactions 199—202 203 Polarisation/polarisable basis functions, energy component analysis 122 Polarisation/polarisable basis functions, force field models for simulation of water 218—219 Poling and conformational analysis 499—501 Polyatomic systems 210—212 Polyelectronic atoms and molecules 34—41 Polymers, energy minimisation methods 289—290 Polymers, free energy calculations 621 622 Polymers, molecular dynamics simulation 391 404 550 551 Polymers, Monte Carlo simulation of 423—431 (see also “Amino acids” “Peptides” “Proteins”) Population Analysis 79—80 189 Porphyrins 197—198 Positive definite matrix 16 268 Potential 156—157 275 486 546 Potential of mean force see “PMF” Potential, computational quantum mechanics 74—75 83—85 Potential, computer simulation 305 319 324—334 338 341—342 Potential, electrostatic 83—85 Potential, energy 4—5 238 253 Potential, force fields 167 170—173 188—192 207—210 212—217 222—226 237—238 240—245 Potential, free energy calculations 549 579 580—585 586 612—614 Potential, ionisation 74—75 Potential, models, pairwise 240—241 Potential, molecular dynamics simulation 387—390 Potential, Monte Carlo simulation 442—443 Potential, new molecules 665 666 Potential, prediction of crystal structures 501—505 Potential, predictive residual sum of squares 701 Potential, predictor-corrector methods of molecular dynamics simulation 358—359 (see also under “Proteins”) Preferential sampling 432 PRESS (predictive residual sum of squares) 701 Pressure 309 385—387 Principal components analysis see “PCA” Principal components regression 706 Probability density function 304 541 Probability matrices for proteins 556—557 Product-based monomer selection 718 Production phase in simulation 315 Profile 535 Proline 221 511 525 556—557 PROMET 502—503 Propane 167 644 Proteins 6 423 Proteins, computer simulation 329—330 338—339 Proteins, conformational analysis 475 489—490 Proteins, force fields 192 221 Proteins, free energy calculations 571 Proteins, predicting structure of 509—562 Proteins, predicting structure of, acronyms and abbreviations 553—554 Proteins, predicting structure of, basic principles 513—517 Proteins, predicting structure of, comparative model 539—545 Proteins, predicting structure of, comparison of methods 547—549 Proteins, predicting structure of, databases, list of 555 Proteins, predicting structure of, first principles methods 517—522 Proteins, predicting structure of, folding and unfolding 512 516—517 539 545—547 549—553 Proteins, predicting structure of, mutation probability matrices 556—557 Proteins, predicting structure of, sequence alignment 522—539 Proteins, predicting structure of, threading 545—547 Proteins, Protein Databank 489—490 539 “Peptides”) Pseudo-acyclic molecules 463—464 Pseudopotentials 156—157 Pyrazine, 2—pyridone 597—598 Pyrazine/pyridine 573 Pyridine, 2—pyridone 597—598 QCISD (quadratic CISD) 113 117 119 QSAR (quantitative structure-activity relationships) 695—706 710 711 QSAR (quantitative structure-activity relationships), cross-validation 701 QSAR (quantitative structure-activity relationships), deriving equation 698—770 QSAR (quantitative structure-activity relationships), discriminant analysis 703—705 QSAR (quantitative structure-activity relationships), interpreting equation 702 QSAR (quantitative structure-activity relationships), neural networks 703—705 QSAR (quantitative structure-activity relationships), principal components regression 706 QSAR (quantitative structure-activity relationships), property relationship 695 702 QSAR (quantitative structure-activity relationships), selecting compounds for analysis 697—698 QSPR (quantitative structure-property relationship) 695 702 Quadratic region 283—284 Quadrupole 76 181 183 185—186 196 Quantitative structure-activity see “QSAR” Quantum mechanics and molecular mechanics combined in chemical reactions 614—616 Quantum mechanics, future role 160—161 Quantum mechanics, solvation, free energy of 594—598 (see also ab initio ”Quantum mechanics” “Advanced computational Quasi ergodicity and Monte Carlo, simulation 433—438 Quasi-Newton energy minimisation 268—269 Quaternions 422 R groups 716—717 r-RESPA (reversible reference system propagation algorithm) 363—364 Radial distribution functions and computer simulation 310—312 Ramachandran map 459—460 514 543 547 Random number generators 418—420 453—454 Random sampling 345—347 Random search 465—467 476 517—518 Random tweak 542 Range scaling 681 Ranitidine 489 644 RANTES 475 Rapid free energy calculations, approximate 585—592 Rappe — Goddard method 193—194 RATTLE method 373—374 Rayleigh — Schrodinger perturbation theory 114 Re-entrant surface 7 Reaction, field 339—340 595—596 597 Reaction, isodemic 116 Reaction, pathways 279—295 Reaction, transform 715—716 Reaction, zone 320—321 (see also “Chemical reactions”) Real gas contribution to virial 309 349—350 Reciprocal lattice 139—140 Recombination operator 480—481 Reduced units, in non-bonded interactions 212 Refractivity, molar 671 Regression 706 Regression, equation 698—699 Regression, linear 666 698—699 702 Relative energies 226 Relaxation time 376 Reptation 427 Repulsive forces 206 (see also “Coulomb attraction/repulsion”) Residual sum of squares 699—700 RESP (restrained electrostatic potential fit) 191—192 Response 697 Restraints/restrained and constraints, difference between 369—370 Restraints/restrained, electrostatic potential fit 191—192 Restraints/restrained, molecular dynamics 483—484 Restraints/restrained, spatial, satisfaction of 540—541 Reversible reference system 363—364 RHF (spin-restricted Hartree — Fock theory) 108—110 Ribose phosphate 493—494 Rigid molecules, simulation of 420—422 Rigid-body method 540 Ring critical point 81 RIS (rotational isomeric state) model 429—431 RMS (root-mean-square) 273 359—360 552 667 RMSD (root-mean-square-distance) 491—493 RNA 509 512 root nodes 461 Root-mean-square 273 359—360 552 667 Roothaan — Hall equations, closed-shell systems 56—59 86—88 Roothaan — Hall equations, density functional theory 132 Roothaan — Hall equations, illustrated 62—5 Roothaan — Hall equations, solving 59—62 Rosenbluth weight 444—447 Rotational isomeric state 429—431 Rotational order 322 Roulette wheel selection 480 RSS (residual sum of squares) 699—700 Rule-based approaches to protein prediction 520—522 Saddle points 253 272—273 280 282—283 291 Saddle points, location 285—288 478 Saddle points, quadratic region 283—284 SAM1 (Semi-Ab-initio Model 1) 99 102 Sampling 345 346—347 410 432 438—442 567—568 575—576 SC24/halide system 571 Scalar product and triple product 12 14 Scaling/scaled, autoscaling 681 Scaling/scaled, coordinates 438—439 Scaling/scaled, mesoscale modelling 402—404 Scaling/scaled, particle theory 609 Scaling/scaled, range 681 SCF (self-consistent field) 117 280 SCF (self-consistent field), complete active-space 113 295 SCF (self-consistent field), computational quantum mechanics 54 64 73 75 87 SCF (self-consistent field), direct method 118—120 SCF (self-consistent field), energy component analysis 122 SCF (self-consistent field), free energy calculations 595—596 597 SCF (self-consistent field), Hartree — Fock 75 87 119 SCF (self-consistent field), multiconfiguration 113 Schottky defect 622—623 626 Schrodinger equations and solutions for Drude molecules 205 246—247 Schrodinger equations and solutions to computational quantum mechanics 27—28 29—30 32 34—37 128 Schrodinger equations and solutions to computer simulation 347—348 Schrodinger equations and solutions to density functional theory 127 128 Schrodinger equations and solutions to solid state quantum mechanics 147 148 SCOP (Structural Classification of Proteins) 539 Scoring functions for docking 664—667 SCRF (self-consistent reaction field) 595—596 597 SCRs (structurally conserved regions) 539—540 SDEP measure 709 Search, depth-first 462 663 Search, grid 459 505 Search, heuristic 531—534 Search, line 262—263 Search, low-mode 478—479 Search, multiple-copy 688 Search, new molecules (3D) 645 647 667—668 Search, random 465—467 476 517—518 Search, systematic 458—464 476 505 Search, trees 461—465 (see also under “Conformational analysis”) Second-moment approximation 242 Secondary structure of proteins 513 Segment matching 540 Self-consistent field see “SCF” “SCRF” Self-penalty walk (SPW) 289—290 584 Semi-Ab-initio Model 1 (SAM1)       99 102 Semi-empirical methods of computational quantum mechanics 65 86—99 102—103 Semi-empirical molecular orbital theories 86 89—96 102—103 Semiconductors, force field potentials for 244—245 Separation of variables 36—37 Sequence alignment of proteins 522—539 Sequence identity 546—547 Sequential univariate minimisation 260—261 Series expansions 10—11 Serine 511 525 556—557 SHAKE procedure 369—374 582 618 Shape arastropy parameter 224—225 SHAPES force field 235—237 Shear viscosity 381 Shielding constant 55—56 Shifted potential 330—331 Shorthand representation of electron integrals 50 Sigmoidal dielectric model 202—204 Silica 297—298 Silicalite 449—450 Silicon 483 693 Silicon and chlorine 620—621 Silicon, force fields 237 245 Silicon, O bond 237 Silicon, phases of 159—160 Silicon, shielding constant 55—56 Silicon, valence electron density 160 Similarity and 3D properties 678—679 Similarity, calculating 676—678 Similarity, searching 668 Simple force field models for simulation of water 216—218 Simplex method of non-derivative energy, minimisation 258—260 Simpson’s rule 412—413 Simulated annealing in ab initio molecular dynamics 616—618 Simulated annealing in conformational analysis 483 Simulated annealing in X-ray refinement 484—486 Simulations see “Computer simulation” “Conformational “Molecular “Monte SINDOl program 99 Single-linkage cluster algorithm 493—496 Site points 689 skewness 680 Slater determinants, density functional theory 135 136 Slater determinants, general polyelectromc systems 38—41 Slater determinants, many-body perturbation 115 Slater determinants, orbitals see “STOs” Slater determinants, Slater’s Rules and Hartree — Fock equations 54—56 Slater functions and basis sets 67—69 Slow growth free energy calculations 568—569 577 631 Smart Monte Carlo method 432—433 Smart Region Definition 710—711 SMILES notation 643—645 715 Smith — Waterman algorithm 529—530 Sodium 181 589 626 Sodium chloride 238 Soergel distance 676—678 Solid-state, defects and free energy calculations 622—630 Solid-state, energy minimisation methods 295—300 Solid-state, force fields for 236—240 Solid-state, quantum mechanical methods for studying 138—160 Solvation/solvents 320 Solvation/solvents, dielectric models of electrostatic non-bonded interactions 202—204 Solvation/solvents, free energy of 576 592—610 Solvation/solvents, free energy of, continuum models 592—593 598—601 Solvation/solvents, free energy of, electrostatic contributions 593—608 Solvation/solvents, free energy of, non-electrostatic contributions 608—609 Solvation/solvents, free energy of, simple models 609—10 Solvation/solvents, molecular dynamics simulation 387—390 
                            
                     
                  
			Ðåêëàìà