√лавна€    Ex Libris     ниги    ∆урналы    —татьи    —ерии     аталог    Wanted    «агрузка    ’удЋит    —правка    ѕоиск по индексам    ѕоиск    ‘орум   
blank
јвторизаци€

       
blank
ѕоиск по указател€м

blank
blank
blank
 расота
blank
Odifreddi P., Sangalli A., Dyson F. Ч The Mathematical Century: The 30 Greatest Problems of the Last 100 Years
Odifreddi P., Sangalli A., Dyson F. Ч The Mathematical Century: The 30 Greatest Problems of the Last 100 Years



ќбсудите книгу на научном форуме



Ќашли опечатку?
¬ыделите ее мышкой и нажмите Ctrl+Enter


Ќазвание: The Mathematical Century: The 30 Greatest Problems of the Last 100 Years

јвторы: Odifreddi P., Sangalli A., Dyson F.

јннотаци€:

The twentieth century was a time of unprecedented development in mathematics, as well as in all sciences: more theorems were proved and results found in a hundred years than in all of previous history. In The Mathematical Century , Piergiorgio Odifreddi distills this unwieldy mass of knowledge into a fascinating and authoritative overview of the subject. He concentrates on thirty highlights of pure and applied mathematics. Each tells the story of an exciting problem, from its historical origins to its modern solution, in lively prose free of technical details.

Odifreddi opens by discussing the four main philosophical foundations of mathematics of the nineteenth century and ends by describing the four most important open mathematical problems of the twenty-first century. In presenting the thirty problems at the heart of the book he devotes equal attention to pure and applied mathematics, with applications ranging from physics and computer science to biology and economics. Special attention is dedicated to the famous ''23 problems'' outlined by David Hilbert in his address to the International Congress of Mathematicians in 1900 as a research program for the new century, and to the work of the winners of the Fields Medal, the equivalent of a Nobel prize in mathematics.

This eminently readable book will be treasured not only by students and their teachers but also by all those who seek to make sense of the elusive macrocosm of twentieth-century mathematics.



язык: en

–убрика: ћатематика/

—татус предметного указател€: √отов указатель с номерами страниц

ed2k: ed2k stats

√од издани€: 2004

 оличество страниц: 223

ƒобавлена в каталог: 08.10.2014

ќперации: ѕоложить на полку | —копировать ссылку дл€ форума | —копировать ID
blank
ѕредметный указатель
Set theory, Fraenkel and      13Ч14 17
Set theory, functions and      21Ч24
Set theory, inaccessible set and      13
Set theory, infinity and      13Ч15 63Ч66
Set theory, large cardinals      13
Set theory, Lebesgue measure and      29Ч33
Set theory, naive      10Ч11 21Ч22
Set theory, paradoxes in      11Ч14
Set theory, structure and      15Ч17
Set theory, type theory and      20
Set theory, Zermelo axioms and      12Ч14 17 19Ч20 65
Severi, Francesco      81
Shafarevich, Igor      85 182
Shannon, Claude      150
Ships      48
Siegel, Carl      43 184
Simon, Herbert      149Ч150 185
Simple groups      73
Simplex method      121 123 177
Singer, Isadore      55 176
Singularity theory      66Ч71
Sloane, N.J.A.      91
Smale, Stephen      124 174Ч176 183
Small divisors problem      131
Smith, Adam      122 124
Soap bubbles      49Ч51
Social choice      95Ч96 185
Social choice, game theory and      108Ч112
Social choice, Hobbes and      108Ч109
Social choice, Rousseau and      109
Solar system      128Ч132
Sonnenschcin, Hugo      124
Soviet Union      109 120
Space-time      107
Specialization      2
Sperner, Emmanuel      39
Spheres      27Ч28 182
Spheres, classification and      78Ч79
Spheres, fixed-point theorem and      38
Spheres, Kepler's problem and      87Ч91 181
Spheres, lattice configurations and      87Ч91
Spheres, Lebesgue measure and      32Ч33
Spheres, Poincare conjecture and      174Ч176
Spheres, psuedospheres      105Ч106
Spheres, surface characteristics and      172Ч173
Spheres, tensor calculus and      104Ч108
Spheres, topology and      56Ч59
Square roots      112Ч113
Stability      123
stacking      87Ч91
Steiner problem      179Ч180
Steiner, Jacob      47
Steinitz, Ernst      36
Strange attractors      153
Strategic programs      150
String theory      136Ч137
Structural Stability and Morphogenesis (Thom)      71
structures      15Ч16 126
Structures, categories and      17Ч21
Structures, dissipative      71
Structures, exotic      57Ч59
Submarines      48
Summa (Pacioli)      116
Sun      129Ч130 152
Supersymmetry      137
Supply and demand      122Ч125
Surface of revolution      48
Surfaces      181 see
Surfaces, classification and      80Ч82
Surfaces, computer graphics and      144Ч145
Surfaces, Fermat's last theorem and      82Ч87
Surfaces, Gauss and      105Ч106
Surfaces, general type      81Ч82
Surfaces, irregular      81Ч82
Surfaces, minimal      47Ч51
Surfaces, singularity theory and      69Ч71
Surfaces, tensor calculus and      104Ч108
Surreal Numbers      63
Symmetry      185
Symmetry, crystallography and      xivЧxv 98Ч104
Symmetry, dimensional space and      28
Symmetry, groups and      72
Symmetry, lattice configurations and      87Ч91
Symmetry, Lie groups and      72Ч77
Symmetry, linear      100
Symmetry, mirror      137
Symmetry, particle physics and      74Ч75
Symmetry, Penrose      102Ч104
Symmetry, planar      101
Symmetry, probability theory and      118Ч119
Symmetry, rotational      98
Symmetry, supersymmetry and      137
Syntactic Structures (Chomsky)      126Ч127
Tait, Peter      136
Taniyama Conjecture      86Ч87 182
Tarski, Alfred      33 39
Tartaglia      72
Taubes, Clifford      58
Taylor, Richard      87
Tensor calculus      104Ч108
Thatcher, Margaret      124
Theorema egregium      105
Theorie Analytique des Probabilites (Laplace)      119
Theory of congruences      167Ч168
Theory of distributions      52Ч56
Theory of elliptic functions      137
Theory of everything      75 108 137
Theory of formal languages      125Ч128
Theory of Games and Economic Behavior, The (von Neumann & Morgenstern)      111 123
Theory of integral equations      112Ч116
Theory of topoi      20
Thom, Rene      55 70Ч71 176 183
Thompson, John      77 183Ч184
Three-body problem      129Ч131
Thue, Axel      88Ч89 126Ч127
Thurston, William      80 184
Tilings      xivЧxv
Tilings, symmetry groups and      98Ч104
Topology: classification and      78Ч82
Topology: compactness and      38
Topology: connectedness and      37
Topology: convexity and      38
Topology: differential      56Ч59
Topology: equilibrium and      124
Topology: Euler characteristic and      172Ч173
Topology: fixed-point theorem and      37Ч39
Topology: fundamental groups and      173Ч174
Topology: homotopy and      173Ч176
Topology: invariants and      134Ч138
Topology: knot theory and      132Ч138
Topology: orientation and      78
Topology: Poincare conjecture and      28 174Ч176
Topology: projective plane and      79Ч80
Topology: spheres and      27Ч28
Topology: structures and      16Ч17
Topology: tensor calculus and      104Ч108
Topology: theory of languages and      128
Torus      79 152 173
Tractrix      106
Transcendental extension      35 182
Traveling salesman problem      179Ч180
Truth tables      145
Tucker, Albert      111 122
Tucker, Warwick      153
Turing Award      24 149 180 185
Turing Test      149Ч151
Turing, Alan      128
Turing, Alan, artificial intelligence and      149
Turing, Alan, computers and      141Ч142
Turing, Alan, decision problem and      145Ч147
Turing, Alan, Turochamp and      150
Turochamp      150
Twin primes conjecture      170Ч171
Type theory      20
Uniqueness      123
United States      120
Universal language      127
Vitali, Giuseppe      32
Volterra, Vito      112
von Koch, Helge      159Ч160
von Neumann, John      3 54
von Neumann, John, algebras of operators and      115
von Neumann, John, computers and      142Ч143
von Neumann, John, general equilibrium theory and      123Ч124
von Neumann, John, minimax theorem of      110Ч112
von Neumann, John, quantum axioms and      114Ч116
Vortex atoms      136
Wada lakes      154 156
Wald, Abraham      123
Wallis, John      34 46
Walras, Leon      122 124
Wang, Hao      102
Wantzel, Pierre      40
Watson, James      97 185
Weather      143Ч144
Weber, Heinrich      34
Weierstrass, Karl      46Ч47 62
Weil, Andre      171 182Ч184
Weinberg, Steven      75 185
Weyl, Hermann      108
Whitney, Hassler      70 184
Wiles, Andrew      26Ч27 184
Wiles, Andrew, Fermat's last theorem and      87 171
Wiles, Andrew, Mordell conjecture and      171
Witten, Edward      56 58 136 184
Wittgenstein, Ludwig      65 140
Wolf Prize      6 18
Wolf Prize, de Giorgi and      50 184
Wolf Prize, Eilenberg and      18 184
Wolf Prize, Erdos and      172 184
Wolf Prize, Hoermander and      55 184
Wolf Prize, Kodaira and      81Ч82 184
Wolf Prize, Kolmogorov and      119 132 184
Wolf Prize, Langlands and      27 184
Wolf Prize, Mandelbrot and      164 184
Wolf Prize, Milnor and      57 184
Wolf Prize, Moser and      132 184
Wolf Prize, Schwartz and      55
Wolf Prize, Selberg and      172 184
Wolf Prize, Serre and      175 184
Wolf Prize, Siegel and      43 184
Wolf Prize, Thompson and      77 184
Wolf Prize, Weil and      171 184
Wolf Prize, Whitney and      70 184
Wolf Prize, Wiles and      27 87 184
Word problem      126
Wos, Larry      142
Yang Ч Mills equations      58 75
Yang, Chen Ning      75
Yau, Shing Tung      82 184
Yoccoz, Jean Christophe      132 163 184
Zelmanov, Efim      77 184
Zermelo Ч Fraenkel set theory      12Ч14 17 19Ч20 65
Zermelo, Ernst      12Ч13 109Ч110
Zero      33
Zero, complex numbers and      34Ч35
Zero, elliptic curves and      66Ч68
Zero, fields and      34Ч36
Zero-sum games      110Ч111
Zeta function      xvЧxvi 43 168Ч172 181Ч182
Zippin, Leo      73
1 2 3 4 5
blank
–еклама
blank
blank
HR
@Mail.ru
       © Ёлектронна€ библиотека попечительского совета мехмата ћ√”, 2004-2020
Ёлектронна€ библиотека мехмата ћ√” | Valid HTML 4.01! | Valid CSS! ќ проекте