Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years
Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: The Mathematical Century: The 30 Greatest Problems of the Last 100 Years

Àâòîðû: Odifreddi P., Sangalli A., Dyson F.

Àííîòàöèÿ:

The twentieth century was a time of unprecedented development in mathematics, as well as in all sciences: more theorems were proved and results found in a hundred years than in all of previous history. In The Mathematical Century , Piergiorgio Odifreddi distills this unwieldy mass of knowledge into a fascinating and authoritative overview of the subject. He concentrates on thirty highlights of pure and applied mathematics. Each tells the story of an exciting problem, from its historical origins to its modern solution, in lively prose free of technical details.

Odifreddi opens by discussing the four main philosophical foundations of mathematics of the nineteenth century and ends by describing the four most important open mathematical problems of the twenty-first century. In presenting the thirty problems at the heart of the book he devotes equal attention to pure and applied mathematics, with applications ranging from physics and computer science to biology and economics. Special attention is dedicated to the famous ''23 problems'' outlined by David Hilbert in his address to the International Congress of Mathematicians in 1900 as a research program for the new century, and to the work of the winners of the Fields Medal, the equivalent of a Nobel prize in mathematics.

This eminently readable book will be treasured not only by students and their teachers but also by all those who seek to make sense of the elusive macrocosm of twentieth-century mathematics.



ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2004

Êîëè÷åñòâî ñòðàíèö: 223

Äîáàâëåíà â êàòàëîã: 08.10.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Set theory, Fraenkel and      13—14 17
Set theory, functions and      21—24
Set theory, inaccessible set and      13
Set theory, infinity and      13—15 63—66
Set theory, large cardinals      13
Set theory, Lebesgue measure and      29—33
Set theory, naive      10—11 21—22
Set theory, paradoxes in      11—14
Set theory, structure and      15—17
Set theory, type theory and      20
Set theory, Zermelo axioms and      12—14 17 19—20 65
Severi, Francesco      81
Shafarevich, Igor      85 182
Shannon, Claude      150
Ships      48
Siegel, Carl      43 184
Simon, Herbert      149—150 185
Simple groups      73
Simplex method      121 123 177
Singer, Isadore      55 176
Singularity theory      66—71
Sloane, N.J.A.      91
Smale, Stephen      124 174—176 183
Small divisors problem      131
Smith, Adam      122 124
Soap bubbles      49—51
Social choice      95—96 185
Social choice, game theory and      108—112
Social choice, Hobbes and      108—109
Social choice, Rousseau and      109
Solar system      128—132
Sonnenschcin, Hugo      124
Soviet Union      109 120
Space-time      107
Specialization      2
Sperner, Emmanuel      39
Spheres      27—28 182
Spheres, classification and      78—79
Spheres, fixed-point theorem and      38
Spheres, Kepler's problem and      87—91 181
Spheres, lattice configurations and      87—91
Spheres, Lebesgue measure and      32—33
Spheres, Poincare conjecture and      174—176
Spheres, psuedospheres      105—106
Spheres, surface characteristics and      172—173
Spheres, tensor calculus and      104—108
Spheres, topology and      56—59
Square roots      112—113
Stability      123
stacking      87—91
Steiner problem      179—180
Steiner, Jacob      47
Steinitz, Ernst      36
Strange attractors      153
Strategic programs      150
String theory      136—137
Structural Stability and Morphogenesis (Thom)      71
structures      15—16 126
Structures, categories and      17—21
Structures, dissipative      71
Structures, exotic      57—59
Submarines      48
Summa (Pacioli)      116
Sun      129—130 152
Supersymmetry      137
Supply and demand      122—125
Surface of revolution      48
Surfaces      181 see
Surfaces, classification and      80—82
Surfaces, computer graphics and      144—145
Surfaces, Fermat's last theorem and      82—87
Surfaces, Gauss and      105—106
Surfaces, general type      81—82
Surfaces, irregular      81—82
Surfaces, minimal      47—51
Surfaces, singularity theory and      69—71
Surfaces, tensor calculus and      104—108
Surreal Numbers      63
Symmetry      185
Symmetry, crystallography and      xiv—xv 98—104
Symmetry, dimensional space and      28
Symmetry, groups and      72
Symmetry, lattice configurations and      87—91
Symmetry, Lie groups and      72—77
Symmetry, linear      100
Symmetry, mirror      137
Symmetry, particle physics and      74—75
Symmetry, Penrose      102—104
Symmetry, planar      101
Symmetry, probability theory and      118—119
Symmetry, rotational      98
Symmetry, supersymmetry and      137
Syntactic Structures (Chomsky)      126—127
Tait, Peter      136
Taniyama Conjecture      86—87 182
Tarski, Alfred      33 39
Tartaglia      72
Taubes, Clifford      58
Taylor, Richard      87
Tensor calculus      104—108
Thatcher, Margaret      124
Theorema egregium      105
Theorie Analytique des Probabilites (Laplace)      119
Theory of congruences      167—168
Theory of distributions      52—56
Theory of elliptic functions      137
Theory of everything      75 108 137
Theory of formal languages      125—128
Theory of Games and Economic Behavior, The (von Neumann & Morgenstern)      111 123
Theory of integral equations      112—116
Theory of topoi      20
Thom, Rene      55 70—71 176 183
Thompson, John      77 183—184
Three-body problem      129—131
Thue, Axel      88—89 126—127
Thurston, William      80 184
Tilings      xiv—xv
Tilings, symmetry groups and      98—104
Topology: classification and      78—82
Topology: compactness and      38
Topology: connectedness and      37
Topology: convexity and      38
Topology: differential      56—59
Topology: equilibrium and      124
Topology: Euler characteristic and      172—173
Topology: fixed-point theorem and      37—39
Topology: fundamental groups and      173—174
Topology: homotopy and      173—176
Topology: invariants and      134—138
Topology: knot theory and      132—138
Topology: orientation and      78
Topology: Poincare conjecture and      28 174—176
Topology: projective plane and      79—80
Topology: spheres and      27—28
Topology: structures and      16—17
Topology: tensor calculus and      104—108
Topology: theory of languages and      128
Torus      79 152 173
Tractrix      106
Transcendental extension      35 182
Traveling salesman problem      179—180
Truth tables      145
Tucker, Albert      111 122
Tucker, Warwick      153
Turing Award      24 149 180 185
Turing Test      149—151
Turing, Alan      128
Turing, Alan, artificial intelligence and      149
Turing, Alan, computers and      141—142
Turing, Alan, decision problem and      145—147
Turing, Alan, Turochamp and      150
Turochamp      150
Twin primes conjecture      170—171
Type theory      20
Uniqueness      123
United States      120
Universal language      127
Vitali, Giuseppe      32
Volterra, Vito      112
von Koch, Helge      159—160
von Neumann, John      3 54
von Neumann, John, algebras of operators and      115
von Neumann, John, computers and      142—143
von Neumann, John, general equilibrium theory and      123—124
von Neumann, John, minimax theorem of      110—112
von Neumann, John, quantum axioms and      114—116
Vortex atoms      136
Wada lakes      154 156
Wald, Abraham      123
Wallis, John      34 46
Walras, Leon      122 124
Wang, Hao      102
Wantzel, Pierre      40
Watson, James      97 185
Weather      143—144
Weber, Heinrich      34
Weierstrass, Karl      46—47 62
Weil, Andre      171 182—184
Weinberg, Steven      75 185
Weyl, Hermann      108
Whitney, Hassler      70 184
Wiles, Andrew      26—27 184
Wiles, Andrew, Fermat's last theorem and      87 171
Wiles, Andrew, Mordell conjecture and      171
Witten, Edward      56 58 136 184
Wittgenstein, Ludwig      65 140
Wolf Prize      6 18
Wolf Prize, de Giorgi and      50 184
Wolf Prize, Eilenberg and      18 184
Wolf Prize, Erdos and      172 184
Wolf Prize, Hoermander and      55 184
Wolf Prize, Kodaira and      81—82 184
Wolf Prize, Kolmogorov and      119 132 184
Wolf Prize, Langlands and      27 184
Wolf Prize, Mandelbrot and      164 184
Wolf Prize, Milnor and      57 184
Wolf Prize, Moser and      132 184
Wolf Prize, Schwartz and      55
Wolf Prize, Selberg and      172 184
Wolf Prize, Serre and      175 184
Wolf Prize, Siegel and      43 184
Wolf Prize, Thompson and      77 184
Wolf Prize, Weil and      171 184
Wolf Prize, Whitney and      70 184
Wolf Prize, Wiles and      27 87 184
Word problem      126
Wos, Larry      142
Yang — Mills equations      58 75
Yang, Chen Ning      75
Yau, Shing Tung      82 184
Yoccoz, Jean Christophe      132 163 184
Zelmanov, Efim      77 184
Zermelo — Fraenkel set theory      12—14 17 19—20 65
Zermelo, Ernst      12—13 109—110
Zero      33
Zero, complex numbers and      34—35
Zero, elliptic curves and      66—68
Zero, fields and      34—36
Zero-sum games      110—111
Zeta function      xv—xvi 43 168—172 181—182
Zippin, Leo      73
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå