Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: The Mathematical Century: The 30 Greatest Problems of the Last 100 Years
Àâòîðû: Odifreddi P., Sangalli A., Dyson F.
Àííîòàöèÿ: The twentieth century was a time of unprecedented development in mathematics, as well as in all sciences: more theorems were proved and results found in a hundred years than in all of previous history. In The Mathematical Century , Piergiorgio Odifreddi distills this unwieldy mass of knowledge into a fascinating and authoritative overview of the subject. He concentrates on thirty highlights of pure and applied mathematics. Each tells the story of an exciting problem, from its historical origins to its modern solution, in lively prose free of technical details.
Odifreddi opens by discussing the four main philosophical foundations of mathematics of the nineteenth century and ends by describing the four most important open mathematical problems of the twenty-first century. In presenting the thirty problems at the heart of the book he devotes equal attention to pure and applied mathematics, with applications ranging from physics and computer science to biology and economics. Special attention is dedicated to the famous ''23 problems'' outlined by David Hilbert in his address to the International Congress of Mathematicians in 1900 as a research program for the new century, and to the work of the winners of the Fields Medal, the equivalent of a Nobel prize in mathematics.
This eminently readable book will be treasured not only by students and their teachers but also by all those who seek to make sense of the elusive macrocosm of twentieth-century mathematics.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2004
Êîëè÷åñòâî ñòðàíèö: 223
Äîáàâëåíà â êàòàëîã: 08.10.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Set theory, Fraenkel and 13—14 17
Set theory, functions and 21—24
Set theory, inaccessible set and 13
Set theory, infinity and 13—15 63—66
Set theory, large cardinals 13
Set theory, Lebesgue measure and 29—33
Set theory, naive 10—11 21—22
Set theory, paradoxes in 11—14
Set theory, structure and 15—17
Set theory, type theory and 20
Set theory, Zermelo axioms and 12—14 17 19—20 65
Severi, Francesco 81
Shafarevich, Igor 85 182
Shannon, Claude 150
Ships 48
Siegel, Carl 43 184
Simon, Herbert 149—150 185
Simple groups 73
Simplex method 121 123 177
Singer, Isadore 55 176
Singularity theory 66—71
Sloane, N.J.A. 91
Smale, Stephen 124 174—176 183
Small divisors problem 131
Smith, Adam 122 124
Soap bubbles 49—51
Social choice 95—96 185
Social choice, game theory and 108—112
Social choice, Hobbes and 108—109
Social choice, Rousseau and 109
Solar system 128—132
Sonnenschcin, Hugo 124
Soviet Union 109 120
Space-time 107
Specialization 2
Sperner, Emmanuel 39
Spheres 27—28 182
Spheres, classification and 78—79
Spheres, fixed-point theorem and 38
Spheres, Kepler's problem and 87—91 181
Spheres, lattice configurations and 87—91
Spheres, Lebesgue measure and 32—33
Spheres, Poincare conjecture and 174—176
Spheres, psuedospheres 105—106
Spheres, surface characteristics and 172—173
Spheres, tensor calculus and 104—108
Spheres, topology and 56—59
Square roots 112—113
Stability 123
stacking 87—91
Steiner problem 179—180
Steiner, Jacob 47
Steinitz, Ernst 36
Strange attractors 153
Strategic programs 150
String theory 136—137
Structural Stability and Morphogenesis (Thom) 71
structures 15—16 126
Structures, categories and 17—21
Structures, dissipative 71
Structures, exotic 57—59
Submarines 48
Summa (Pacioli) 116
Sun 129—130 152
Supersymmetry 137
Supply and demand 122—125
Surface of revolution 48
Surfaces 181 see
Surfaces, classification and 80—82
Surfaces, computer graphics and 144—145
Surfaces, Fermat's last theorem and 82—87
Surfaces, Gauss and 105—106
Surfaces, general type 81—82
Surfaces, irregular 81—82
Surfaces, minimal 47—51
Surfaces, singularity theory and 69—71
Surfaces, tensor calculus and 104—108
Surreal Numbers 63
Symmetry 185
Symmetry, crystallography and xiv—xv 98—104
Symmetry, dimensional space and 28
Symmetry, groups and 72
Symmetry, lattice configurations and 87—91
Symmetry, Lie groups and 72—77
Symmetry, linear 100
Symmetry, mirror 137
Symmetry, particle physics and 74—75
Symmetry, Penrose 102—104
Symmetry, planar 101
Symmetry, probability theory and 118—119
Symmetry, rotational 98
Symmetry, supersymmetry and 137
Syntactic Structures (Chomsky) 126—127
Tait, Peter 136
Taniyama Conjecture 86—87 182
Tarski, Alfred 33 39
Tartaglia 72
Taubes, Clifford 58
Taylor, Richard 87
Tensor calculus 104—108
Thatcher, Margaret 124
Theorema egregium 105
Theorie Analytique des Probabilites (Laplace) 119
Theory of congruences 167—168
Theory of distributions 52—56
Theory of elliptic functions 137
Theory of everything 75 108 137
Theory of formal languages 125—128
Theory of Games and Economic Behavior, The (von Neumann & Morgenstern) 111 123
Theory of integral equations 112—116
Theory of topoi 20
Thom, Rene 55 70—71 176 183
Thompson, John 77 183—184
Three-body problem 129—131
Thue, Axel 88—89 126—127
Thurston, William 80 184
Tilings xiv—xv
Tilings, symmetry groups and 98—104
Topology: classification and 78—82
Topology: compactness and 38
Topology: connectedness and 37
Topology: convexity and 38
Topology: differential 56—59
Topology: equilibrium and 124
Topology: Euler characteristic and 172—173
Topology: fixed-point theorem and 37—39
Topology: fundamental groups and 173—174
Topology: homotopy and 173—176
Topology: invariants and 134—138
Topology: knot theory and 132—138
Topology: orientation and 78
Topology: Poincare conjecture and 28 174—176
Topology: projective plane and 79—80
Topology: spheres and 27—28
Topology: structures and 16—17
Topology: tensor calculus and 104—108
Topology: theory of languages and 128
Torus 79 152 173
Tractrix 106
Transcendental extension 35 182
Traveling salesman problem 179—180
Truth tables 145
Tucker, Albert 111 122
Tucker, Warwick 153
Turing Award 24 149 180 185
Turing Test 149—151
Turing, Alan 128
Turing, Alan, artificial intelligence and 149
Turing, Alan, computers and 141—142
Turing, Alan, decision problem and 145—147
Turing, Alan, Turochamp and 150
Turochamp 150
Twin primes conjecture 170—171
Type theory 20
Uniqueness 123
United States 120
Universal language 127
Vitali, Giuseppe 32
Volterra, Vito 112
von Koch, Helge 159—160
von Neumann, John 3 54
von Neumann, John, algebras of operators and 115
von Neumann, John, computers and 142—143
von Neumann, John, general equilibrium theory and 123—124
von Neumann, John, minimax theorem of 110—112
von Neumann, John, quantum axioms and 114—116
Vortex atoms 136
Wada lakes 154 156
Wald, Abraham 123
Wallis, John 34 46
Walras, Leon 122 124
Wang, Hao 102
Wantzel, Pierre 40
Watson, James 97 185
Weather 143—144
Weber, Heinrich 34
Weierstrass, Karl 46—47 62
Weil, Andre 171 182—184
Weinberg, Steven 75 185
Weyl, Hermann 108
Whitney, Hassler 70 184
Wiles, Andrew 26—27 184
Wiles, Andrew, Fermat's last theorem and 87 171
Wiles, Andrew, Mordell conjecture and 171
Witten, Edward 56 58 136 184
Wittgenstein, Ludwig 65 140
Wolf Prize 6 18
Wolf Prize, de Giorgi and 50 184
Wolf Prize, Eilenberg and 18 184
Wolf Prize, Erdos and 172 184
Wolf Prize, Hoermander and 55 184
Wolf Prize, Kodaira and 81—82 184
Wolf Prize, Kolmogorov and 119 132 184
Wolf Prize, Langlands and 27 184
Wolf Prize, Mandelbrot and 164 184
Wolf Prize, Milnor and 57 184
Wolf Prize, Moser and 132 184
Wolf Prize, Schwartz and 55
Wolf Prize, Selberg and 172 184
Wolf Prize, Serre and 175 184
Wolf Prize, Siegel and 43 184
Wolf Prize, Thompson and 77 184
Wolf Prize, Weil and 171 184
Wolf Prize, Whitney and 70 184
Wolf Prize, Wiles and 27 87 184
Word problem 126
Wos, Larry 142
Yang — Mills equations 58 75
Yang, Chen Ning 75
Yau, Shing Tung 82 184
Yoccoz, Jean Christophe 132 163 184
Zelmanov, Efim 77 184
Zermelo — Fraenkel set theory 12—14 17 19—20 65
Zermelo, Ernst 12—13 109—110
Zero 33
Zero, complex numbers and 34—35
Zero, elliptic curves and 66—68
Zero, fields and 34—36
Zero-sum games 110—111
Zeta function xv—xvi 43 168—172 181—182
Zippin, Leo 73
Ðåêëàìà