Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: The Mathematical Century: The 30 Greatest Problems of the Last 100 Years
Àâòîðû: Odifreddi P., Sangalli A., Dyson F.
Àííîòàöèÿ: The twentieth century was a time of unprecedented development in mathematics, as well as in all sciences: more theorems were proved and results found in a hundred years than in all of previous history. In The Mathematical Century , Piergiorgio Odifreddi distills this unwieldy mass of knowledge into a fascinating and authoritative overview of the subject. He concentrates on thirty highlights of pure and applied mathematics. Each tells the story of an exciting problem, from its historical origins to its modern solution, in lively prose free of technical details.
Odifreddi opens by discussing the four main philosophical foundations of mathematics of the nineteenth century and ends by describing the four most important open mathematical problems of the twenty-first century. In presenting the thirty problems at the heart of the book he devotes equal attention to pure and applied mathematics, with applications ranging from physics and computer science to biology and economics. Special attention is dedicated to the famous ''23 problems'' outlined by David Hilbert in his address to the International Congress of Mathematicians in 1900 as a research program for the new century, and to the work of the winners of the Fields Medal, the equivalent of a Nobel prize in mathematics.
This eminently readable book will be treasured not only by students and their teachers but also by all those who seek to make sense of the elusive macrocosm of twentieth-century mathematics.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2004
Êîëè÷åñòâî ñòðàíèö: 223
Äîáàâëåíà â êàòàëîã: 08.10.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Geometry, Lie groups and 72—77
Geometry, minimal surfaces and 47—51
Geometry, negative numbers and 34
Geometry, Newton and 45—46
Geometry, number theory and 171
Geometry, orbital motion and 128—132
Geometry, structures and 15—21 71 57—59 126 see
Geometry, tensor calculus and 104—108
Geometry, three-body problem and 129—131
Geometry, topology and 37—39 56—59 78—79 see
Glashow, Sheldon 75 185
Gleason, Andrew 73
Glennie, Alick 150
Global programs 150—151
God 46 98
Goedel, Kurt, continuum hypothesis and 65
Goedel, Kurt, decision problem and 147
Goedel, Kurt, incompleteness theorem of 13—14 46—47 128 158 166
Goldbach conjecture 170 181—182
Gompf, Robert 58
Gorenstein, Daniel 77
Gowers, William 115 184
Grammar 125—128
Granada 98
Granville, Andrew 86
Graphics 144—145
Gravity 75 107—108
Gravity, orbital motion and 128—132
Gravity, three-body problem and 129—131
Greeks 9 40 49
Greeks, conic sections and 52
Greeks, geometry and 27—28 44—45
Greeks, negative numbers and 34
Greeks, perfect numbers and 167
Greeks, prime numbers and 168—169
Grothendieck, Alexandre 13 17 20—21 115 171 183
Group theory 182
Group theory, abelian groups and 73
Group theory, abstract groups and 72—73
Group theory, alternating groups and 76
Group theory, Burnside conjectures and 77
Group theory, continuous group and xiv 73
Group theory, crystallography and 98—104
Group theory, cyclic groups and 76
Group theory, dimension and 73—74
Group theory, fundamental groups and 173—174
Group theory, Hilbert's fifth problem and 73
Group theory, homotopy and 173—175
Group theory, knot theory and 136—137
Group theory, Lie groups and 72 182
Group theory, permutations and 72
Group theory, simple groups and 73
Group theory, symmetry groups and 72 98—104
Group theory, theory of languages and 128
Group theory, unification and 75
Guthrie, Francis 154 181
Hadamard, Jacques 170
Haken, Wolfgang 142 157—158
Hamilton, William 35 49
Hardy, Godfrey 170
Harmonic ratios 39
Harriot, Thomas 87—88
Hausdorff, Felix 32—33 160—161
Heath-Brown, Roger 86
Heaviside, Oliver 53—54
Heawood, Percy 155
Hebrews 98
Heesch, Heinrich 102
Heisenberg, Werner 114—115 185
Helmholtz, Hermann 136
Hemion, Geoffrey 134
Hermite, Charles 42
Heron of Alexandria 49
Hilbert space 113—116
Hilbert, David xii 4 6
Hilbert, David, decision problem of 145—148
Hilbert, David, eighteenth problem of 90 102
Hilbert, David, eighth problem of 170—171
Hilbert, David, electromagnetism and 107
Hilbert, David, fifth problem of 73
Hilbert, David, first problem of 63—66
Hilbert, David, fourth problem of 108
Hilbert, David, functional analysis and 112—113
Hilbert, David, general theory of integral equations and 112
Hilbert, David, geometry and 30 46
Hilbert, David, Lebesgue measure and 30—31
Hilbert, David, nineteenth problem of 50 55
Hilbert, David, Nullstellensatz of 180
Hilbert, David, Paris address of 165—166
Hilbert, David, second problem of 46—47
Hilbert, David, set theory and 14—15
Hilbert, David, seventh problem of 42—43
Hilbert, David, sixth problem of 107 114 119
Hilbert, David, summary of problems 182
Hilbert, David, tenth problem of 147—148
Hilbert, David, third problem of 30—31
Hilbert, David, transcendental numbers and 42—43
Hilbert, David, twentieth problem of 50
Hilbert, David, twenty-third problem of 50
Hipparchus 45
Hironaka, Heisuki 82 183
Hobbes, Thomas 108—109
Hoermander, Lars 55 183—184
Hoffman, David 50 144
Homotopy 173—176
Hubbard, John 163
Hurewicz, Witold 175
Huygens, Christian 116—117
Hyperbolic geometry, classification and 80—82
Hyperbolic geometry, development of 43—47
Hyperreal numbers 59—63
Hyperspheres 28 182
Hyperspheres, fixed-point theorem and 38
Hyperspheres, lattice configurations and 90—91
Hypoelliptic operators 55
Identity elements 16
Illinois Journal of Mathematics 158
imaginary numbers see "Complex numbers"
Inaccessible set 13
Incompleteness theorem 13—14 46—47 128 158 166
Independence theorem 65—66
Index theorem 55—56
India 33—34
Indivisibles 60
Inertia 128—129
Infinite descent 83
Infinitesimals 28
Infinitesimals, model theory and 59—63
infinity 9
Infinity, Bourbaki group and 15—17
Infinity, complexity theory and 176—180
Infinity, continuum hypothesis and 65—66
Infinity, correspondence and 63—64
Infinity, functional analysis and 112—116
Infinity, hyperreal numbers and 59—63
Infinity, knot theory and 135
Infinity, Lie groups and 73—77
Infinity, polynomial time and 176—180
Infinity, Riemann zeta function and 170—172
Infinity, set theory and 13—15 63—66
Infinity, simplex method and 177
Infinity, theory of distributions and 52—56
Infinity, transcendental numbers and 43
Inflexions 68
Information theory 150 178—180
Inquiry into the Nature and Causes of the Wealth of Nations (Smith) 122
Instability 152
instantons 58
Integers 33—34
Integers, consistency and 46—47
Integers, Fermat's last theorem and 82—87
Integers, general theory of integral equations and 112
Integers, Hilbert's tenth problem and 147—148
Integers, programming and 121—122
Integers, transcendental numbers and 39—43
International Congress of Mathematicians xii—xiii xv—xvi 109 145
International Congress of Mathematicians of 1897 4
International Congress of Mathematicians of 1900 4
International Congress of Mathematicians, Fields Medal and 4—6
International Congress of Mathematicians, Hilbert and 4
Intuitionism 20 39
Invariance 29 134—138
Inverse operations 33
Invertibility 34
Irrational numbers xx 34—35 166
Irrational numbers, transcendental numbers and 39—43
Isometry 46
Isomorphism 116
Janko, Zvonimir 76
Japanese 98 109
Jones, Vaughan 115 135—138 184
Jordan, Camille 31—32 50
Judaeus, Philo 167
Julia, Gaston 161—162
Junger, Itha xiii
Jupiter 130
K-theory 55
Kakutani, Shizuo 39 124
Kam theorem 131—132
Kantorovich, Leonid 121 185
Karp, Richard 177 180 182 185
Kasparov, Gary 151
Kempe, Alfred 155 157
Kepler, Johannes 129 159 181
Kepler, Johannes, lattice configurations and 88—91
Kerekjarto, Bela 57
Kervaire, Michel 57
Khachian, L.G. 177
Khayyam, Omar 82
Killing, Wilhelm 74
Kleene, Stephen 23—24
Klein bottle 79—80 173
Klein, Felix 44 78—79
Knaster, B 39
Knot theory 132—138
Koch curve 54—55 160
Kodaira, Kunihiko 81 183—184
Kolmogorov, Andrei 119 131—132 180 184
Kontsevich, Maxim 135 137 184
Koopmans, Tjalling 121 185
Korchnoi, Viktor 151
Kreigspiel game 109
Kronecker, Leopold 46
Kuhn, Harold 122
Kummer, Ernst 83
l-adic cohomology 171
Lacan, Jacques 126
Laczkovich, Miklos 33
Lagrange, Joseph Louis 49 130
Laissez-faire 122—123
Lambda calculus 21 23—24 185
Langlands, Robert 27 184
Large Cardinals 13
Larsen, Bent 151
Law of Large Numbers 117—118
Laws of motion 128
Laws of Thought, The (Boole) 140
Lawvere, William 19—20
Lebesque measure analysis and 29—33 113—114
Lebesque measure analysis and, probability theory and 119
Leclerc, Georges Louis 118
Leech, John 91
Lefschetz, Solomon 39
Legendre, Adrien-Marie 83
Leibniz, Gottfried Wilhelm 10
Leibniz, Gottfried Wilhelm, brachistochrone and 48
Leibniz, Gottfried Wilhelm, infinitesimals and 60—61
Levi-Civita, Tullio 107—108
Levi-Strauss, Claude 126
Leviathan, The (Hobbes) 108—109
Levin, Leonid 177 180 182
Levy, David 151
Liber de Ludo Aleae (Cardano) 116
Lie groups 72 182
Lie groups, classification of 73—74
Lie groups, group theory and 73—77
Lie groups, infinity and 73—74
Lie groups, particle physics and 74—77
Lie, Sophus xiv 73
Lindemann, Ferdinand 42—43
Linear language 127
Linear programming 120—122 185
Linear programming, complexity theory and 176—180
Linearity xiv
Linguistics 125—128 145
Linguistics, Boolean algebra and 140—141
Liouville, Joseph 41 114
Lisp 146
Listing, Johann 78 133
Lobachevsky, Nikolai 44
Local programs 150—151
Logarithms 41—43 169
Logic 182
Logic, Aristotelian 20
Logic, artificial intelligence and 141 148—151
Logic, Boolean algebra and 140—141
Logic, categories and 17—21
Logic, computers and 139—143 see
Logic, connectives and 145
Logic, crystallography and 98—104
Logic, decision problem and 145—148
Logic, expert systems and 149
Logic, incompleteness theorem 13—14 46—47 128 158 166
Logic, intuitionistic 20 39
Logic, number theory and 43—47
Logic, prime numbers and 169
Logic, quantifiers and 145
Logic, set theory and 10—24
Logic, structures and 14—17
Logic, syntax and 141
Logic, truth tables and 145
Logic, Turing and 141
Lord Kelvin 136
Lorenz, Edward 143—144 153
MacLane, Saunders 18 20
Mandelbrot, Benoit 144—145 162—164 184
Manifolds see also "Topology"
Manifolds, Calabi — Yau 82 137
Manifolds, classification and 81—82
Manifolds, Riemann 56—59 107—108
Markov, Anatoly 128
Mathematical Foundations of Quantum Mechanics (von Neumann) 114—115
Mathematics, applied, computers and 143—145 see
Mathematics, applied, crystallography and 98—104
Mathematics, applied, dual nature of 92
Mathematics, applied, dynamical systems theory and 128—132
Mathematics, applied, functional analysis and 112—116
Mathematics, applied, game theory and 108—112
Mathematics, applied, general equilibrium theory and 122—125
Mathematics, applied, knot theory and 132—138
Mathematics, applied, optimization theory and 120—122
Mathematics, applied, probability theory and 116—119
Mathematics, applied, tensor calculus 104—108
Mathematics, applied, theory of formal languages and 125—128
Mathematics, general, abstraction and 1
Mathematics, general, associative property and 73
Mathematics, general, Bourbaki group and 15—17
Mathematics, general, Cartesian versus Baconian view of xi—xvi
Mathematics, general, computers and 139—164
Mathematics, general, discovery versus invention 8—9
Ðåêëàìà