Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years
Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: The Mathematical Century: The 30 Greatest Problems of the Last 100 Years

Àâòîðû: Odifreddi P., Sangalli A., Dyson F.

Àííîòàöèÿ:

The twentieth century was a time of unprecedented development in mathematics, as well as in all sciences: more theorems were proved and results found in a hundred years than in all of previous history. In The Mathematical Century , Piergiorgio Odifreddi distills this unwieldy mass of knowledge into a fascinating and authoritative overview of the subject. He concentrates on thirty highlights of pure and applied mathematics. Each tells the story of an exciting problem, from its historical origins to its modern solution, in lively prose free of technical details.

Odifreddi opens by discussing the four main philosophical foundations of mathematics of the nineteenth century and ends by describing the four most important open mathematical problems of the twenty-first century. In presenting the thirty problems at the heart of the book he devotes equal attention to pure and applied mathematics, with applications ranging from physics and computer science to biology and economics. Special attention is dedicated to the famous ''23 problems'' outlined by David Hilbert in his address to the International Congress of Mathematicians in 1900 as a research program for the new century, and to the work of the winners of the Fields Medal, the equivalent of a Nobel prize in mathematics.

This eminently readable book will be treasured not only by students and their teachers but also by all those who seek to make sense of the elusive macrocosm of twentieth-century mathematics.



ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2004

Êîëè÷åñòâî ñòðàíèö: 223

Äîáàâëåíà â êàòàëîã: 08.10.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Geometry, Lie groups and      72—77
Geometry, minimal surfaces and      47—51
Geometry, negative numbers and      34
Geometry, Newton and      45—46
Geometry, number theory and      171
Geometry, orbital motion and      128—132
Geometry, structures and      15—21 71 57—59 126 see
Geometry, tensor calculus and      104—108
Geometry, three-body problem and      129—131
Geometry, topology and      37—39 56—59 78—79 see
Glashow, Sheldon      75 185
Gleason, Andrew      73
Glennie, Alick      150
Global programs      150—151
God      46 98
Goedel, Kurt, continuum hypothesis and      65
Goedel, Kurt, decision problem and      147
Goedel, Kurt, incompleteness theorem of      13—14 46—47 128 158 166
Goldbach conjecture      170 181—182
Gompf, Robert      58
Gorenstein, Daniel      77
Gowers, William      115 184
Grammar      125—128
Granada      98
Granville, Andrew      86
Graphics      144—145
Gravity      75 107—108
Gravity, orbital motion and      128—132
Gravity, three-body problem and      129—131
Greeks      9 40 49
Greeks, conic sections and      52
Greeks, geometry and      27—28 44—45
Greeks, negative numbers and      34
Greeks, perfect numbers and      167
Greeks, prime numbers and      168—169
Grothendieck, Alexandre      13 17 20—21 115 171 183
Group theory      182
Group theory, abelian groups and      73
Group theory, abstract groups and      72—73
Group theory, alternating groups and      76
Group theory, Burnside conjectures and      77
Group theory, continuous group and      xiv 73
Group theory, crystallography and      98—104
Group theory, cyclic groups and      76
Group theory, dimension and      73—74
Group theory, fundamental groups and      173—174
Group theory, Hilbert's fifth problem and      73
Group theory, homotopy and      173—175
Group theory, knot theory and      136—137
Group theory, Lie groups and      72 182
Group theory, permutations and      72
Group theory, simple groups and      73
Group theory, symmetry groups and      72 98—104
Group theory, theory of languages and      128
Group theory, unification and      75
Guthrie, Francis      154 181
Hadamard, Jacques      170
Haken, Wolfgang      142 157—158
Hamilton, William      35 49
Hardy, Godfrey      170
Harmonic ratios      39
Harriot, Thomas      87—88
Hausdorff, Felix      32—33 160—161
Heath-Brown, Roger      86
Heaviside, Oliver      53—54
Heawood, Percy      155
Hebrews      98
Heesch, Heinrich      102
Heisenberg, Werner      114—115 185
Helmholtz, Hermann      136
Hemion, Geoffrey      134
Hermite, Charles      42
Heron of Alexandria      49
Hilbert space      113—116
Hilbert, David      xii 4 6
Hilbert, David, decision problem of      145—148
Hilbert, David, eighteenth problem of      90 102
Hilbert, David, eighth problem of      170—171
Hilbert, David, electromagnetism and      107
Hilbert, David, fifth problem of      73
Hilbert, David, first problem of      63—66
Hilbert, David, fourth problem of      108
Hilbert, David, functional analysis and      112—113
Hilbert, David, general theory of integral equations and      112
Hilbert, David, geometry and      30 46
Hilbert, David, Lebesgue measure and      30—31
Hilbert, David, nineteenth problem of      50 55
Hilbert, David, Nullstellensatz of      180
Hilbert, David, Paris address of      165—166
Hilbert, David, second problem of      46—47
Hilbert, David, set theory and      14—15
Hilbert, David, seventh problem of      42—43
Hilbert, David, sixth problem of      107 114 119
Hilbert, David, summary of problems      182
Hilbert, David, tenth problem of      147—148
Hilbert, David, third problem of      30—31
Hilbert, David, transcendental numbers and      42—43
Hilbert, David, twentieth problem of      50
Hilbert, David, twenty-third problem of      50
Hipparchus      45
Hironaka, Heisuki      82 183
Hobbes, Thomas      108—109
Hoermander, Lars      55 183—184
Hoffman, David      50 144
Homotopy      173—176
Hubbard, John      163
Hurewicz, Witold      175
Huygens, Christian      116—117
Hyperbolic geometry, classification and      80—82
Hyperbolic geometry, development of      43—47
Hyperreal numbers      59—63
Hyperspheres      28 182
Hyperspheres, fixed-point theorem and      38
Hyperspheres, lattice configurations and      90—91
Hypoelliptic operators      55
Identity elements      16
Illinois Journal of Mathematics      158
imaginary numbers      see "Complex numbers"
Inaccessible set      13
Incompleteness theorem      13—14 46—47 128 158 166
Independence theorem      65—66
Index theorem      55—56
India      33—34
Indivisibles      60
Inertia      128—129
Infinite descent      83
Infinitesimals      28
Infinitesimals, model theory and      59—63
infinity      9
Infinity, Bourbaki group and      15—17
Infinity, complexity theory and      176—180
Infinity, continuum hypothesis and      65—66
Infinity, correspondence and      63—64
Infinity, functional analysis and      112—116
Infinity, hyperreal numbers and      59—63
Infinity, knot theory and      135
Infinity, Lie groups and      73—77
Infinity, polynomial time and      176—180
Infinity, Riemann zeta function and      170—172
Infinity, set theory and      13—15 63—66
Infinity, simplex method and      177
Infinity, theory of distributions and      52—56
Infinity, transcendental numbers and      43
Inflexions      68
Information theory      150 178—180
Inquiry into the Nature and Causes of the Wealth of Nations (Smith)      122
Instability      152
instantons      58
Integers      33—34
Integers, consistency and      46—47
Integers, Fermat's last theorem and      82—87
Integers, general theory of integral equations and      112
Integers, Hilbert's tenth problem and      147—148
Integers, programming and      121—122
Integers, transcendental numbers and      39—43
International Congress of Mathematicians      xii—xiii xv—xvi 109 145
International Congress of Mathematicians of 1897      4
International Congress of Mathematicians of 1900      4
International Congress of Mathematicians, Fields Medal and      4—6
International Congress of Mathematicians, Hilbert and      4
Intuitionism      20 39
Invariance      29 134—138
Inverse operations      33
Invertibility      34
Irrational numbers      xx 34—35 166
Irrational numbers, transcendental numbers and      39—43
Isometry      46
Isomorphism      116
Janko, Zvonimir      76
Japanese      98 109
Jones, Vaughan      115 135—138 184
Jordan, Camille      31—32 50
Judaeus, Philo      167
Julia, Gaston      161—162
Junger, Itha      xiii
Jupiter      130
K-theory      55
Kakutani, Shizuo      39 124
Kam theorem      131—132
Kantorovich, Leonid      121 185
Karp, Richard      177 180 182 185
Kasparov, Gary      151
Kempe, Alfred      155 157
Kepler, Johannes      129 159 181
Kepler, Johannes, lattice configurations and      88—91
Kerekjarto, Bela      57
Kervaire, Michel      57
Khachian, L.G.      177
Khayyam, Omar      82
Killing, Wilhelm      74
Kleene, Stephen      23—24
Klein bottle      79—80 173
Klein, Felix      44 78—79
Knaster, B      39
Knot theory      132—138
Koch curve      54—55 160
Kodaira, Kunihiko      81 183—184
Kolmogorov, Andrei      119 131—132 180 184
Kontsevich, Maxim      135 137 184
Koopmans, Tjalling      121 185
Korchnoi, Viktor      151
Kreigspiel game      109
Kronecker, Leopold      46
Kuhn, Harold      122
Kummer, Ernst      83
l-adic cohomology      171
Lacan, Jacques      126
Laczkovich, Miklos      33
Lagrange, Joseph Louis      49 130
Laissez-faire      122—123
Lambda calculus      21 23—24 185
Langlands, Robert      27 184
Large Cardinals      13
Larsen, Bent      151
Law of Large Numbers      117—118
Laws of motion      128
Laws of Thought, The (Boole)      140
Lawvere, William      19—20
Lebesque measure analysis and      29—33 113—114
Lebesque measure analysis and, probability theory and      119
Leclerc, Georges Louis      118
Leech, John      91
Lefschetz, Solomon      39
Legendre, Adrien-Marie      83
Leibniz, Gottfried Wilhelm      10
Leibniz, Gottfried Wilhelm, brachistochrone and      48
Leibniz, Gottfried Wilhelm, infinitesimals and      60—61
Levi-Civita, Tullio      107—108
Levi-Strauss, Claude      126
Leviathan, The (Hobbes)      108—109
Levin, Leonid      177 180 182
Levy, David      151
Liber de Ludo Aleae (Cardano)      116
Lie groups      72 182
Lie groups, classification of      73—74
Lie groups, group theory and      73—77
Lie groups, infinity and      73—74
Lie groups, particle physics and      74—77
Lie, Sophus      xiv 73
Lindemann, Ferdinand      42—43
Linear language      127
Linear programming      120—122 185
Linear programming, complexity theory and      176—180
Linearity      xiv
Linguistics      125—128 145
Linguistics, Boolean algebra and      140—141
Liouville, Joseph      41 114
Lisp      146
Listing, Johann      78 133
Lobachevsky, Nikolai      44
Local programs      150—151
Logarithms      41—43 169
Logic      182
Logic, Aristotelian      20
Logic, artificial intelligence and      141 148—151
Logic, Boolean algebra and      140—141
Logic, categories and      17—21
Logic, computers and      139—143 see
Logic, connectives and      145
Logic, crystallography and      98—104
Logic, decision problem and      145—148
Logic, expert systems and      149
Logic, incompleteness theorem      13—14 46—47 128 158 166
Logic, intuitionistic      20 39
Logic, number theory and      43—47
Logic, prime numbers and      169
Logic, quantifiers and      145
Logic, set theory and      10—24
Logic, structures and      14—17
Logic, syntax and      141
Logic, truth tables and      145
Logic, Turing and      141
Lord Kelvin      136
Lorenz, Edward      143—144 153
MacLane, Saunders      18 20
Mandelbrot, Benoit      144—145 162—164 184
Manifolds      see also "Topology"
Manifolds, Calabi — Yau      82 137
Manifolds, classification and      81—82
Manifolds, Riemann      56—59 107—108
Markov, Anatoly      128
Mathematical Foundations of Quantum Mechanics (von Neumann)      114—115
Mathematics, applied, computers and      143—145 see
Mathematics, applied, crystallography and      98—104
Mathematics, applied, dual nature of      92
Mathematics, applied, dynamical systems theory and      128—132
Mathematics, applied, functional analysis and      112—116
Mathematics, applied, game theory and      108—112
Mathematics, applied, general equilibrium theory and      122—125
Mathematics, applied, knot theory and      132—138
Mathematics, applied, optimization theory and      120—122
Mathematics, applied, probability theory and      116—119
Mathematics, applied, tensor calculus      104—108
Mathematics, applied, theory of formal languages and      125—128
Mathematics, general, abstraction and      1
Mathematics, general, associative property and      73
Mathematics, general, Bourbaki group and      15—17
Mathematics, general, Cartesian versus Baconian view of      xi—xvi
Mathematics, general, computers and      139—164
Mathematics, general, discovery versus invention      8—9
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå