Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: The Mathematical Century: The 30 Greatest Problems of the Last 100 Years
Àâòîðû: Odifreddi P., Sangalli A., Dyson F.
Àííîòàöèÿ: The twentieth century was a time of unprecedented development in mathematics, as well as in all sciences: more theorems were proved and results found in a hundred years than in all of previous history. In The Mathematical Century , Piergiorgio Odifreddi distills this unwieldy mass of knowledge into a fascinating and authoritative overview of the subject. He concentrates on thirty highlights of pure and applied mathematics. Each tells the story of an exciting problem, from its historical origins to its modern solution, in lively prose free of technical details.
Odifreddi opens by discussing the four main philosophical foundations of mathematics of the nineteenth century and ends by describing the four most important open mathematical problems of the twenty-first century. In presenting the thirty problems at the heart of the book he devotes equal attention to pure and applied mathematics, with applications ranging from physics and computer science to biology and economics. Special attention is dedicated to the famous ''23 problems'' outlined by David Hilbert in his address to the International Congress of Mathematicians in 1900 as a research program for the new century, and to the work of the winners of the Fields Medal, the equivalent of a Nobel prize in mathematics.
This eminently readable book will be treasured not only by students and their teachers but also by all those who seek to make sense of the elusive macrocosm of twentieth-century mathematics.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2004
Êîëè÷åñòâî ñòðàíèö: 223
Äîáàâëåíà â êàòàëîã: 08.10.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Curves: theory of distributions and 54—55
Cusano, Nicola 59
Cyclic groups 76
Cycloids 48
cylinders 105
da Vinci, Leonardo 49
Dantzig, George 121—123
Dartmouth College 149
Darwin, Charles xi
Davis, Martin 148
de Caritat, Marie Jean Antoine Nicolas 95
de Fermat, Pierre 181
de Fermat, Pierre, analytic geometry and 45
de Fermat, Pierre, derivatives and 68—69
de Fermat, Pierre, infinitesimals and 59—62
de Fermat, Pierre, perfect numbers and 166—168
de Fermat, Pierre, prime numbers and 139—140
de Fermat, Pierre, probability theory and 116
de Giorgi, Ennio 50 184
de Laplace, Pierre Simon xi 19 130
de Malves, Jean Paul de Gua 68
de Maupertuis, Pierre Louis 49
de Morgan, Augustus 34 155
de Saussure, Ferdinand 125—126
Debreu, Gerard 124 185
Decision problem 145—148
Dedekind, Richard 34—35 46
Deep Blue 151
Deep Thought 151
Dehn, Max 31 134 165
Deligne, Pierre 171 183
Deoxyribonucleic acid (DNA) 97 137—138 185
Derivatives, general equilibrium theory and 122—125
Derivatives, singularity theory and 68—71
Descartes, Rene 52
Descartes, Rene, analysis and 9 45
Descartes, Rene, methodology of xi—xvi
Descartes, Rene, real numbers and 34
Diamond, Fred 87
Diffeomorphisms 69
Differential topology 56—59
Dimensional space, Banach spaces and 114—116
Dimensional space, catastrophes and 69—71
Dimensional space, classification and 78—82
Dimensional space, crystallography and xiv-xv 88 98—104 182
Dimensional space, Euler characteristic and 172—173
Dimensional space, exotic spaces and 57—59 136—137
Dimensional space, fixed-point theorem and 37—39
Dimensional space, fractals and 144—145 159—164
Dimensional space, functional analysis and 112—116
Dimensional space, Hilbert space and 113—116
Dimensional space, hyperbolic geometry and 43—47
Dimensional space, Kepler's problem and 88—91
Dimensional space, knot theory and 132—138
Dimensional space, lattice configurations and 87—91
Dimensional space, Lebesgue measure and 29—33
Dimensional space, Lie groups and 73—75
Dimensional space, manifolds and 56—59
Dimensional space, Poincare conjecture and 28 174—176
Dimensional space, polyhedra and 27—28
Dimensional space, topology and 37—39 56—59 see
Diophantine equations 147—148 179 182
Diophantus 26 82 84
Dirac, Paul 54
Dirichlet, Peter Lejeune 52—53 83
Discours sur l'origine de l'inegalite parmi les hommes (Rousseau) 109
Dissipative structures 71
Donaldson, Simon 57—58 136—137 184
Douady, Adrien 163
Douglas, Jessie 50 183
Dynamical systems theory 128—132 185
Dynamical systems theory, chaos theory and 71 143—144 151—154
Dynamical systems theory, computers and 143
Dynamical systems theory, instability and 152
Dyson, Freeman xi—xvi
e 41—42
Earth 129 152
Economics 37 96 121 185
Economics, general equilibrium theory and 122—125
Edmonds, Jack 176
Egyptians 92 98
Eilenberg, Samuel 18 184
Einstein, Albert 93—94 107
Electoral systems 95—96
Electromagnetism 107—108
Electronic Numerical Integrator and Calculator (Eniac) 142
Electroweak theory 58 75 185
Elementary proofs 172
Elements (Euclid) 169
Elements of Mathematics (Bourbaki group) 15
Ellipsoid method 177
Elliptic curves 85 137 182
Elliptic curves, singularity theory and 66—71
Elliptic operators 55
Elo points 150
Enriques — Kodaira theorem 82
Enriques, Federigo 81
Entscheiduugsproblem (decision problem) 145—148
Enzymes 97
Equations: abstract groups 73
Equations: action 49
Equations: arc of ellipse 66
Equations: associative property and 73
Equations: Diophantine 147—148 179 182
Equations: Dirichlet function 53
Equations: Euler's 42
Equations: Fermat's last theorem and 83 85—87
Equations: formulas and 71—72
Equations: fractal dimension 161
Equations: functional analysis 113
Equations: general theory of integral 112
Equations: grammatical productions 126
Equations: greatest common divisor 147
Equations: higher-degree 72
Equations: infinitesimals and 60—61
Equations: knot theory and 135
Equations: limit and 61
Equations: Maxwell's 107
Equations: Mertens 159
Equations: parabola 60
Equations: second-degree 71
Equations: Yang — Mills 75
Equilibrium theory 122—125 185
Erdos, Paul 172 184
Escher, Maurits 102—103
Etruscan Venus (Cox and Francis) 144
Euclid 9 15 168—169 181 see
Eudoxus 31
Euler's constant 43
Euler, Leonhard, analysis and 52
Euler, Leonhard, calculus of variation and 48
Euler, Leonhard, prime numbers and 139—140 169
Euler, Leonhard, principle of minimal action and 49
Euler, Leonhard, surface characteristics and 172—173
Euler, Leonhard, theory of congruences and 167—168
Euler, Leonhard, three-body problem and 129—130
Euler, Leonhard, transcendental numbers and 41—42
Exotic structures 57—59 136—137
Expected value 116—117
Expert Systems 149
Exponential time 180
Extensionality principle 10 22
Factorization 178—180
Faltings, Gerd 171 184
Faraday, Michael xi
Farey, John 64
Fatou, Pierre 161—162
Fedorov, E.S. 98—99
Feit, Walter 77
Fermat's last theorem 26—27 43
Fermat's Last Theorem, elementary proof and 172
Fermat's Last Theorem, Hilbert's tenth problem and 147—148
Fermat's Last Theorem, progress on 82—87
Fermat's Last Theorem, Wiles and 87 171
Ferrari, Ludovico 72
Feynman integrals 137
Fields 33—36
Fields medal xiii xvi
Fields Medal, Atiyah and 55 183
Fields Medal, Baker and 43 147 183
Fields Medal, Bombieri and 50 104 183
Fields Medal, Borcherds and 137 184
Fields Medal, Bourgain and 115 184
Fields Medal, Cohen and 65 183
Fields Medal, Connes and 115 184
Fields Medal, Deligne and 171 183
Fields Medal, Donaldson and 57 184
Fields Medal, Douglas and 50 183
Fields Medal, Faltings and 184
Fields Medal, Freedman and 81 184
Fields Medal, Gowers and 115 184
Fields Medal, Grothendieck and 115 171 183
Fields Medal, Hironaka and 82 183
Fields Medal, Hoermander and 55 183
Fields Medal, Jones and 115 135 184
Fields Medal, Kodaira and 81 183
Fields Medal, Kontsevich and 135 184
Fields Medal, McCullen and 163 184
Fields Medal, Milnor and 57 183
Fields Medal, Mori and 82 184
Fields Medal, Novikov and 57 104 176 183
Fields Medal, Roth and 41 183
Fields Medal, Schwartz and 55 115 183
Fields Medal, Selberg and 172 183
Fields Medal, Serre and 175 183
Fields Medal, significance of 4—6
Fields Medal, Smale and 124 174—175 183
Fields Medal, Thom and 176 183
Fields Medal, Thompson and 77 183—184
Fields Medal, Thurston and 80 184
Fields Medal, Wiles and 87
Fields Medal, Witten and 56 136 184
Fields Medal, Yau and 82 184
Fields Medal, Yoccoz and 132 163 184
Fields Medal, Zelmanov and 77 184
Fields, John Charles 5
Finite additivity 29
Finite automata 127
Finite fields 35
Finiteness theorem 175
Fischer — Griess Monster 136—137
Fischer, Ernst 114
Fixed-points 23 37—39 124
Fluxions 60—61
Fontana, Niccolo 72
Ford, Gerald 95
formulas 52
Foundations of Geometry (Hilbert) 30 46
Four-color theorem 142 154—159 181
Fourier sum 131
Fourier transform xv
Fourier, Joseph 52
Fracnkel, Abraham 13—14
Fractals attractors and 162—163
Fractals attractors and, complex numbers and 162
Fractals attractors and, computers and 144—145 159—164
Fractals attractors and, self-similarity and 160—161
Fractions 41
Francis, George 144
Frechet, Maurice 113
Freedman, Michael 57—58 81 175 184
Frege, Gottlob 10—11 140—141
Frey, Gerhard 86—87
Functions xiii
Functions, analysis and 112—116
Functions, calculus of variations 47—51
Functions, categories and 17—21
Functions, complexity theory and 176—180
Functions, comprehension principle and 22
Functions, continuous 39
Functions, delta 53—54
Functions, Dirichlet's definition of 52—53
Functions, elliptic 85 137
Functions, extensionality principle and 22
Functions, fixed point and 23 37—39
Functions, formulas and 52
Functions, general equilibrium theory and 122—125
Functions, Hamiltonian 49
Functions, Heaviside 53—54
Functions, Hilbert space and 113—114
Functions, index theorem and 55—56
Functions, lambda calculus and 21 23—24
Functions, Lebesgue measure and 29—33
Functions, modular 86—87
Functions, Moebius 182
Functions, monotonic 29 39
Functions, naive theory of 21—22
Functions, polynomial time and 176—180
Functions, principle of minimal action 49
Functions, quantum axioms and 112—116
Functions, Riemann integral and 31—32
Functions, Riemann Zeta 170—172
Functions, Russell's paradox and 22—23
Functions, semicontinuous 39
Functions, theory of distributions and 52—56
Fundamental groups 173—174
Galileo 48
Galois fields 36
Galois, Evariste 35 72—73 76
Game theory 93 185
Game theory, Borel and 110
Game theory, gambling and 116—119
Game theory, general equilibrium theory and 123—124
Game theory, Hobbes and 108—109
Game theory, minimax theorem and 110—112
Game theory, Nash equilibrium and 111
Game theory, perfect information and 110
Game theory, prisoner's dilemma and 111
Game theory, purpose of 108
Game theory, Rousseau and 109
Game theory, Zermelo and 109—110
Game theory, zero-sum games and 110—111
Gauss, Carl Friedrich 44
Gauss, Carl Friedrich, complex numbers and 34—35
Gauss, Carl Friedrich, curves and 105—106
Gauss, Carl Friedrich, lattice configurations and 88 90
Gauss, Carl Friedrich, probability theory and 118
Gauss, Carl Friedrich, quadratic reciprocity and 147
Gelfand, Alexandr 43
Gell-Mann, Murray 75 185
General equilibrium theory 93 122—125 185
General theory of integral equations 112
Gentzen, Gerhard 47
Geodesics 105
Geography 45
Geometry 9 11
Geometry, algebra and 45—46 171—172
Geometry, analytic 45—47
Geometry, ancient Greeks and 27—28
Geometry, classification and 78—82
Geometry, curvature and 104—108
Geometry, discrete 87—91
Geometry, four-color problem and 142 154—159 181
Geometry, fractals and 144—145 159—164
Geometry, functional analysis and 112—116
Geometry, hyperbolic 43—47 80—82
Geometry, infinitesimals and 59—63
Geometry, Kepler's problem and 87—91
Geometry, lattice configurations and 87—91
Geometry, Lebesgue measure and 29—33
Ðåêëàìà