Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: The Mathematical Century: The 30 Greatest Problems of the Last 100 Years
Àâòîðû: Odifreddi P., Sangalli A., Dyson F.
Àííîòàöèÿ: The twentieth century was a time of unprecedented development in mathematics, as well as in all sciences: more theorems were proved and results found in a hundred years than in all of previous history. In The Mathematical Century , Piergiorgio Odifreddi distills this unwieldy mass of knowledge into a fascinating and authoritative overview of the subject. He concentrates on thirty highlights of pure and applied mathematics. Each tells the story of an exciting problem, from its historical origins to its modern solution, in lively prose free of technical details.
Odifreddi opens by discussing the four main philosophical foundations of mathematics of the nineteenth century and ends by describing the four most important open mathematical problems of the twenty-first century. In presenting the thirty problems at the heart of the book he devotes equal attention to pure and applied mathematics, with applications ranging from physics and computer science to biology and economics. Special attention is dedicated to the famous ''23 problems'' outlined by David Hilbert in his address to the International Congress of Mathematicians in 1900 as a research program for the new century, and to the work of the winners of the Fields Medal, the equivalent of a Nobel prize in mathematics.
This eminently readable book will be treasured not only by students and their teachers but also by all those who seek to make sense of the elusive macrocosm of twentieth-century mathematics.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2004
Êîëè÷åñòâî ñòðàíèö: 223
Äîáàâëåíà â êàòàëîã: 08.10.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
"Computing Machines and Intelligence" (Turing) 149
"Foundations of Mathematics for the Working Mathematician" (Bourbaki group) 15
"Invisible hand" 122—123
"Publish or perish" 2
function 53—54
(Euler's constant) 43
Abel, Niels 72
Abelian groups 73
Abstraction 1 72—73
Abstraction, categories and 18
Abstraction, fields and 33—36
Abstraction, functions and 21—24
Abstraction, Lebesgue measure and 29—33
Abstraction, set theory and 10—24
Abstraction, topology and 37—39
Adian, S.I. 77
Aeneid 47
Airplanes 48
Alexander the Great 132—133
Alexander, James 134—135 138
Algebra automorphisms 137
Algebra automorphisms, Boolean 140—142 182
Algebra automorphisms, fields and 33—36
Algebra automorphisms, finite groups and 71—77
Algebra automorphisms, fundamental theorem of 34—35
Algebra automorphisms, geometry and 45—46 171—172
Algebra automorphisms, grammatical productions and 128
Algebra automorphisms, invariants and 134—138
Algebra automorphisms, knot theory and 137
Algebra automorphisms, natural numbers 33—34
Algebra automorphisms, singularity theory and 66—71
Algebra automorphisms, structures and 16—17
Algebra automorphisms, transcendental numbers 39—43
Algebra automorphisms, von Neumann operators 115
Algebraic closure 36
Algebraic extension 35
Algebraic manifolds 81—82
Algorithms' complexity theory and 176—180
Algorithms' complexity theory and, computers and 145—148
Algorithms' complexity theory and, decision problem and 145—148
Algorithms' complexity theory and, exponential time and 180
Algorithms' complexity theory and, factorization and 178—180
Algorithms' complexity theory and, polynomial time and 176—180
Algorithms' complexity theory and, simplex method and 177
Algorithms' complexity theory and, Turing's definition of 176
Alhambra 98
Alternating groups 76
Analysis 9 11 182
Analysis, dynamical systems theory and 128—132
Analysis, fixed-point theorem and 37—39
Analysis, game theory and 108—112
Analysis, infinitesimals and 59—63
Analysis, knot theory and 132—138
Analysis, Lebesgue measure and 29—33
Analysis, nonstandard 62—63
Analysis, quantum axioms and 112—116
Analysis, Riemann hypothesis and 168—172
Analysis, set theory and 10—14
Analysis, social choice and 108—112
Analysis, theory of distributions and 52—56
Analytic geometry 45—47
Appel, Kenneth 142 157—158
Arabs 34 98
Archimedes 31 59
Area 29—33
Aristotelian logic 20
Arithmetic 9 11
Arithmetic (Diophantus) 26
Arithmetic, modular 35 179 182
Arnol'd, Vladimir 131—132
Arrow, Kenneth 96 124 185
Ars Conjectandi (Bernoulli) 117
artificial intelligence 141 185
Artificial intelligence, chess and 149—151
Artificial intelligence, exaggerations of 148—149
Artificial intelligence, expert systems and 149
Artificial intelligence, Shannon and 150
Artificial intelligence, Turing test and 149—151
Artin, Emil 171
Aspect, Alain 95
Associative property 73
Astronomy 45
Astronomy, orbital motion and 128—132 151—154
Astronomy, three-body problem and 129—131
Atiyah, Michael 55 176 183
Atomic bomb 142
atoms xii 1
Atoms, complex numbers and xiii—xiv
Atoms, Lie groups and 74—77
Attractors 152 162—163
Augustine 167
Austrians 109
Automata 127
Automatic Computing Engine (ACE) 142
Automorphisms 137
Axioms 107
Axioms, categories and 19—20
Axioms, computers and 142
Axioms, decision problem and 145—148
Axioms, hyperbolic geometry and 43—47
Axioms, incompleteness theorem and 13—14
Axioms, probability theorem and 116—119
Axioms, quantum mechanics and 112—116
Axioms, set theory and 65—66
Babbage, Charles 150
Babylonians 71 83 92
Bacon, Francis xi—xvi
Baire, Rene 53
Baker, Alan 43 147—148 183
Banach spaces 114—116
Banach, Stefan 33 39 114
Barycenter 130
Bayes's law 118
Bayes, Thomas 118
Bell, John 94—95
BELLE program 150—151
Beltrami, Eugenio 44
Berger, Robert 102
Berkeley, Bishop 60
Bernoulli, Daniel 117
Bernoulli, Jacques 117
Bernoulli, Jean 48
Bernstein, Serge 55
Bible, the 98
Bieberbach, Ludwig 102
Bifurcations 69—71
Bohr, Niels 93
Bolyai, Janos 30—31 44
Bolzano, Bernhard 63
Bombelli, Raffaele 34
Bombieri, Enrico 50 104 183
Boolean algebra 140—142 182
Boone, William 128
Borcherds, Richard 137 184
Borel, Emile 110
Botvinnik, Mikhail 150
Bourbaki group xii—xiii
Bourbaki group, categories and 18—19
Bourbaki group, philosophy of 15—17
Bourbaki group, structure and 15—17
Bourgain, Jean 115 184
Brachistochrone 48
Bravais, Auguste 99
Breuil, Christophe 87
Brouwer, Luitzen 20
Brouwer, Luitzen, fixed-point theorem and 37—39 124
Brownawell, Dale 180
Burnside conjectures 77 182
Butterfly effect 143—144
Calabi — Yau manifolds 82 137
Calculus 182
Calculus, dynamical systems theory and 128—132
Calculus, functional analysis and 112—116
Calculus, infinitesimal 28 59—63
Calculus, lambda 21 23—24 185
Calculus, maxima/minima and 47—51
Calculus, Steiner problem and 179—180
Calculus, tensor 104—108
Calculus, Turing and 141
Calculus, variations and 47—51
Cantor, Georg 181
Cantor, Georg, decision problem and 146—147
Cantor, Georg, dimension and 37
Cantor, Georg, infinity and 63—66
Cantor, Georg, number theory and 46
Cantor, Georg, set theory and 10—15
Cantor, Georg, transcendental numbers and 41
Capitalism 120 125
Cardano, Gerolamo 34 72 116
Cartan, Elie 74
Carter, Jimmy 95
Cartesian thought xi—xvi
Castelnuovo, Guido 81
Catastrophe theory 69—71
Categories 17—21
Categories for the Working Mathematician (MacLane) 20
Cauchy, Augustin 61
Cavalieri, Bonaventura 60
Cayley, Arthur 72
Celestial Mechanics (Laplace) 130
Chaos theory 71
Chaos theory, attractors and 152 162—163
Chaos theory, butterfly effect and 143—144
Chaos theory, computers and 143—144 151—154
Chaos theory, instability and 152
Characteristics 36 40
Chess 149—151
Chevalley, Claude 76
Chomsky, Noam 126—127
Chromodynamics 58
Church, Alonzo 21 23—24 128 145—147
circles 27—28 31
Circles, fixed-point theorem and 38
Circles, hyperbolic geometry and 44
Circles, infinitesimals and 59
Circles, Kepler's problem and 87—91
Circles, lattice onfigurations and 87—91
Circles, Lebesgue measure and 33
Circles, Queen Dido and 47
Circles, tensor calculus and 104—108
City of God, The (Augustine) 167
Classes 11—12
Classes, catastrophes and 69—71
Classes, categories and 17—21
Classes, dimensional space and 78—82
Classes, elliptic curves and 66—71
Classes, finite groups and 71—77
Classes, P = NP problem and 176—180
Cobham, A. 176
Cobordism theory 55 176
Codimension 70
Cohen, Paul 65—66 183
Communism 120
Compactness 38
Complete metric spaces 39
Complete partial orders 39
complex numbers xiii—xiv
Complex numbers, fractals and 162
Complex numbers, introduction of 34—35
Complex numbers, transcendental numbers and 42
Complexity theory 176—180 185
Comprehension principle 10—12 22
Computers ACE 142
Computers ACE, algorithms and 145—148
Computers ACE, artificial intelligence and 141 148—151 185
Computers ACE, atomic bomb and 142
Computers ACE, Babbage and 150
Computers ACE, beginnings of 140—141
Computers ACE, Boole and 140—141
Computers ACE, calculating power of 142—143
Computers ACE, chaos theory and 43—44 151—154
Computers ACE, CRAY 159
Computers ACE, cryptography and 178—180
Computers ACE, dynamic systems and 143
Computers ACE, ENIAC 142
Computers ACE, exaggeration of 139—140
Computers ACE, expert systems and 149
Computers ACE, four-color theorem and 142 154—159
Computers ACE, fractals and 144—145 159—164
Computers ACE, functions and 21—24
Computers ACE, graphics and 144—145 152—153 156—164
Computers ACE, languages and 127—128 146
Computers ACE, mindless use of 139—140
Computers ACE, polynomial time and 176—177
Computers ACE, prime number searches and 139
Computers ACE, proofs and 142 154—159
Computers ACE, topology and 39
Computers ACE, Turing and 141—142 149—151 185
Condorcet, Marquis of 95
Conic sections 46 52
Conic sections, algebraic curves and 66
Conic sections, elliptic curves and 66—71
Connectives 145
Connes, Alain 115 184
Conrad, Brian 87
Constructible numbers 40—41 65
Context-free language 127—128
Context-sensitive language 127
Continuous groups xiv 73
Continuum Hypothesis 65—66 181—182
Contractable compact complexes 39
Convergence 123
Convexity 38
Conway, John 63 91 137 182
Cook, Stephen 177 180 182 185
Coordinate systems 45 108
Coordinate systems, functional analysis and 112—116
Coordinate systems, Lie groups and 72—77
Corank 70
Countable additivity 119
Cournot, Antoine-Augustin 122
Cours de linguistique generate (Saussure) 125
Cox, Donna 144
CRAY supercomputer 159
Creation of the World, The (Judaeus) 167
Crick, Francis 97 185
Cryptography 178—180
Crystallography xiv—xv 88 182
Crystallography, symmetry groups and 98—104
Cubics 66
Curbastro, Gregorio Ricci 107
Curie, Marie xii
Curves: algebraic 66—71
Curves: attractors and 152—153
Curves: boundary problems and 142 154—159
Curves: calculus ofvariations and 47—51
Curves: catastrophe theory and 69—71
Curves: chaos theory and 151—154
Curves: classification and 81
Curves: corank and 70
Curves: derivatives and 68—71
Curves: elliptic 66—71 85 137 182
Curves: Fermat's last theorem and 82—87
Curves: fixed-point theorem and 37—39
Curves: fractals and 144—145 159—164
Curves: Gauss and 105—106
Curves: minimal surfaces and 47—51
Curves: Newton's definition and 105
Curves: probability theory and 118—119
Curves: tensor calculus and 104—108
Ðåêëàìà