√лавна€    Ex Libris     ниги    ∆урналы    —татьи    —ерии     аталог    Wanted    «агрузка    ’удЋит    —правка    ѕоиск по индексам    ѕоиск    ‘орум   

ѕоиск по указател€м

Odifreddi P., Sangalli A., Dyson F. Ч The Mathematical Century: The 30 Greatest Problems of the Last 100 Years
Odifreddi P., Sangalli A., Dyson F. Ч The Mathematical Century: The 30 Greatest Problems of the Last 100 Years

ќбсудите книгу на научном форуме

Ќашли опечатку?
¬ыделите ее мышкой и нажмите Ctrl+Enter

Ќазвание: The Mathematical Century: The 30 Greatest Problems of the Last 100 Years

јвторы: Odifreddi P., Sangalli A., Dyson F.


The twentieth century was a time of unprecedented development in mathematics, as well as in all sciences: more theorems were proved and results found in a hundred years than in all of previous history. In The Mathematical Century , Piergiorgio Odifreddi distills this unwieldy mass of knowledge into a fascinating and authoritative overview of the subject. He concentrates on thirty highlights of pure and applied mathematics. Each tells the story of an exciting problem, from its historical origins to its modern solution, in lively prose free of technical details.

Odifreddi opens by discussing the four main philosophical foundations of mathematics of the nineteenth century and ends by describing the four most important open mathematical problems of the twenty-first century. In presenting the thirty problems at the heart of the book he devotes equal attention to pure and applied mathematics, with applications ranging from physics and computer science to biology and economics. Special attention is dedicated to the famous ''23 problems'' outlined by David Hilbert in his address to the International Congress of Mathematicians in 1900 as a research program for the new century, and to the work of the winners of the Fields Medal, the equivalent of a Nobel prize in mathematics.

This eminently readable book will be treasured not only by students and their teachers but also by all those who seek to make sense of the elusive macrocosm of twentieth-century mathematics.

язык: en

–убрика: ћатематика/

—татус предметного указател€: √отов указатель с номерами страниц

ed2k: ed2k stats

√од издани€: 2004

 оличество страниц: 223

ƒобавлена в каталог: 08.10.2014

ќперации: ѕоложить на полку | —копировать ссылку дл€ форума | —копировать ID
ѕредметный указатель
Mathematics, general, Fields Medal and      4Ч6
Mathematics, general, fragmentation of      2 25Ч26
Mathematics, general, harmonic ratios and      39Ч40
Mathematics, general, incompleteness theorem and      13Ч14
Mathematics, general, increased publication and      2
Mathematics, general, modern quality of      2Ч3
Mathematics, general, paradoxes and      11Ч14
Mathematics, general, specialization and      2
Mathematics, pure: discrete geometry and      87Ч91
Mathematics, pure: Fermat's last theorem and      26Ч27 82Ч87
Mathematics, pure: fields and      33Ч36
Mathematics, pure: fixed-point theorem and      37Ч39
Mathematics, pure: fragmentation and      25Ч26
Mathematics, pure: group classification and      71Ч77
Mathematics, pure: hyperreal numbers and      59Ч63
Mathematics, pure: incompleteness theorem and      47
Mathematics, pure: Lebesgue measure and      29Ч33
Mathematics, pure: minimal surfaces and      47Ч51
Mathematics, pure: number theory and      82Ч87
Mathematics, pure: polyhedra and      27Ч28
Mathematics, pure: set theory and      63Ч66
Mathematics, pure: singularity theory and      66Ч71
Mathematics, pure: spheres and      27Ч28
Mathematics, pure: theory of distributions and      52Ч56
Mathematics, pure: topology and      56Ч59 78Ч82 see
Mathematics, pure: transcendental numbers and      39Ч43
Mather, John      71
Mathieu, Emile      76
Matrices      74
Matyasevitch, Yuri      148
Maximum/minimum problems      47Ч51 110Ч112
Maxwell's equations      58 107
Mayas      33
McCarthy, John      149 185
McCullen, Curtis      163 184
McCulloch, Warren      141
McCune, William      142
Meeks, William      50 144
Membranes      136
Menger sponge      161
Mersenne primes      167Ч168
Mertens, Franz      159 182
Metboies nouvelles de la mecanique celeste (Poincare)      131
Method of exhaustion      31
Method of least squares      118
Mills, Robert      75
Milnor, John      57Ч59 81 176 183Ч184
Minimal Model Program      82
Minimal surfaces      47Ч51
Minimax theorem      110Ч112
Minsky, Marvin      149 185
Mirror Symmetry      137
Mischaikow, Konstantin      153
Mittag-Leffler, Goesta      5Ч6
Model theory      59Ч63
Modular arithmetic      35 179 182
Moebius strip      78 173
Moebius, Augustus      78Ч79 159 182
Moise, Edwin      57
Monotonic functions      29 39
Monte Carlo method      118
Montgomery, Deane      73
Moon      129 152
Moonlight conjecture      137 182
Mordell, Leo      85 147 171Ч172 182
Morgenstern, Oscar      111
Mori, Shigefumi      82 184
Morse, Marston      69
Moser, Jurgen      131Ч132 184
Mother structures      17
Mrozek, Marian      153
MUSIC      39Ч40
Naive set theory      10Ч11 21Ч22
Nash, John      111 185
Natural numbers      33Ч34
Nature      xiЧxvi 1 39
negative numbers      33Ч34 68Ч71
Neurology      141
Newell, Allen      149 185
Newton, Isaac      xii
Newton, Isaac, brachistochrone and      48
Newton, Isaac, calculus and      128Ч132
Newton, Isaac, curves and      105
Newton, Isaac, fluxions of      60Ч61
Newton, Isaac, geometry and      45Ч46
Newton, Isaac, inertia and      128Ч129
Newton, Isaac, infinitesimals and      60Ч61
Newton, Isaac, laws of motion and      128
Newton, Isaac, surface of revolution and      48
Newton, Isaac, three-body problem and      129Ч130
Nobel prize      5Ч6 71 75 185
Nobel Prize, Arrow and      96 124
Nobel Prize, Crick and      97
Nobel Prize, Debreu and      124
Nobel Prize, Kantorovich and      121
Nobel Prize, Koopmans and      121
Nobel Prize, Nash and      111
Nobel Prize, Schroedinger and      114
Nobel Prize, Watson and      97
Non-Euclidean geometry      43Ч47 80Ч82
Nonlinearity      xiv
Norton, Simon      137 182
Novikov, Pavel      128 183
Novikov, Petr      77
Novikov, Sergei      57 104 176
Number theory, algebra and      171 see
Number theory, consistency and      46Ч47
Number theory, cryptography and      178Ч180
Number theory, elementary proofs and      172
Number theory, factorization and      178Ч180
Number theory, Fermat's last theorem and      26Ч27 43 82Ч87 147Ч148 172
Number theory, geometry and      171
Number theory, incompleteness theorem and      47
Number theory, modular arithmetic and      179 182
Number theory, perfect numbers problem and      166Ч168
Number theory, Riemann hypothesis and      168Ч172
Number theory, theory of congruences and      167Ч168
Number theory, transcendental numbers and      39Ч43
Odifreddi, Piergiorgio      xiiЧxiii
Odlyzko, Andrew      159
On the Three-Body Problem and the Equations of Dynamics (Poincare)      131
Optimization theory      93 120Ч122
Orbital motion      128Ч132
Orbital motion, chaos theory and      151Ч154
Ordered structures      16
Oresme      45
Orientation      78
Oscar prize      130Ч131
P = NP problem      176Ч180 182
Pacioli, Luca      116
Pareto, Vilfredo      122
Pascal      146
Pascal, Blaise      xi 116
Peano, Giuseppe      31Ч32 53
Penrose, Roger      xivЧxv 102Ч104
Perfect numbers      166Ч168 181
Permutation groups      72
Pfleger, Helmut      150Ч151
Philosophical Investigations (Wittgenstein)      140
photons      94Ч95
Physics      182 185
Physics, atomic symmetry and      74Ч75
Physics, Bohr and      93
Physics, crystallography and      102Ч104
Physics, delta function and      54
Physics, Einstein and      93Ч94
Physics, electroweak theory and      75
Physics, EPR paradox and      94Ч95
Physics, force unification and      75
Physics, inertia and      128Ч129
Physics, knot theory and      136Ч137
Physics, laws of motion and      128
Physics, Lie groups and      74Ч77
Physics, Mandelbrot and      164
Physics, principle of minimal action and      49
Physics, quantum mechanics      xiiiЧxiv 54Ч56 93Ч95 112Ч116 185
Physics, reality and      93Ч94
Physics, relativity and      107
Physics, theory of everything and      75
Physics, topology and      58 42Ч43
Piaget, Jean      126
Pitts, Walter      141
Plateau, Joseph      49Ч50 181
Podolski, Boris      94
Poincare, Henri      4 131 182
Poincare, Henri, conjecture of      28 174Ч176
Poincare, Henri, hyperbolic geometry and      44
Polyhedra      27Ч33
Polynomial time      176Ч180
Pontryagin, Lev      175
Positive numbers      33Ч34 68Ч71
Post, Emil      126 128 145
Poussin, Charles Jean de La Vallee      170
Prigoginc, Ilya      71 185
Prime field      36
Prime number theorem      169
Prime numbers      77
Prime numbers, computers and      139
Prime numbers, Euler and      139Ч140
Prime numbers, Fermat's last theorem and      26Ч27 43 82Ч87 147Ч148 172
Prime numbers, Greeks and      168Ч169
Prime numbers, Mersenne primes and      167Ч168
Prime numbers, Riemann hypothesis and      xv-xvi 43 168Ч172 181Ч182
Prime numbers, twin primes conjecture and      170Ч171
Principia (Newton)      45Ч46 48 129
Principle of minimal action      49
Principles of Quantum Mechanics, The (Dirac)      54
Prisoner's Dilemma      111
Private keys      178Ч180
Probability theory      116Ч119
Problem of the needle      118
Projective plane      79Ч80
PROLOG      146
Proof theory      47
Proper Classes      11Ч12
Prussians      109
Pseudospheres      105Ч106
Psychology      125Ч128
Public keys      178Ч180
Push-down automata      127
Putnam, Hilary      148
Pythagoreans      9 33 46 166
Pythagoreans, Fermat's last theorem and      83
Pythagoreans, functional analysis and      113
Pythagoreans, harmonic ratios and      39
Pythagoreans, hyperbolic geometry and      44
Pythagoreans, irrational numbers and      34
Pythagoreans, perfect numbers and      167
Pythagoreans, rational numbers and      39Ч40
Quadratic reciprocity      147
Quantifiers      145
quantum mechanics      54 185
Quantum mechanics, axiomatization and      112Ч116
Quantum mechanics, Bohr and      93
Quantum mechanics, complex numbers and      xiiiЧxiv
Quantum mechanics, EPR paradox and      94Ч95
Quantum mechanics, index theorem and      55Ч56
Quantum mechanics, linearity and      xiv
Quantum mechanics, reality and      93Ч94
Quasi-crystals      xivЧxv 103Ч104
Quasi-periodic motion      132
Queen Dido      47
Quevedo, Leonardo Torres y      150
Quinquennial plans      120
Rado, Tibor      57
Raleigh, Walter      87
Ramanujan      171Ч172
Rational numbers      33Ч34 166
Rational numbers, Fermat's last theorem and      82Ч87
Rational numbers, Pythagoreans and      39Ч40
Rational numbers, transcendental numbers and      39Ч43
Reagan, Ronald      95 124
Real numbers      34Ч35
Real numbers, algebraic structures and      16
Real numbers, complex numbers and      xiiiЧxiv
Real numbers, consistency and      46Ч47
Real numbers, hyperreal      59Ч63
Real numbers, infinity and      63Ч66
Real numbers, surreal numbers and      63
reality      93Ч94
Regular language      127
Relativity, general theory of      107Ч108
Ribet, Ken      87
Ribonucleic acid (RNA)      97
Riele, Herman te      159
Riemann hypothesis      xvЧxvi 43 181Ч182
Riemann hypothesis, description of      168Ч172
Riemann hypothesis, Hilbert on      43
Riemann integral      31Ч32
Riemann manifolds      56Ч59 106Ч108
Riemann, Bernhard      31 78Ч79 106Ч107
Riesz, Friedrich      114
Robbins, Herbert      142 182
Robinson, Abraham      62
Robinson, Julia      148
Rokhlin, Vladimir      57Ч58 175
Rosen, Nathan      94
Roth, Klaus      41 183
Rousseau, Jean-Jacques      109
Royal Society of London      54
Ruffini, Paolo      72
Russell paradox      11Ч12 22Ч23
Russell, Bertrand      11
Russell, Bertrand, Boolean algebra and      140Ч141
Russell, Bertrand, decision problem and      147
Russell, Bertrand, type theory and      20
Russians      109 120
Saddles      69
Salam, Abdus      75 185
Saturn      130
Scarf, Herbert      124
Schechtman, Daniel      103
schemas      171
Schlesinger, Karl      123
Schmidt, Erhard      113
Schneider, Thorald      43
Schroedinger, Erwin      xiii 114 185
Schwartz, Laurent      54Ч55 115 183
Scott, Dana      24 185
Scotus, Duns      63
Segre, Corrado      82
Selberg, Atle      172 183Ч184
Self-reproduction      96Ч97
Self-similarity      160Ч161
Semicontinuous functions      39
Serre, Jean-Pierre      175 183Ч184
Set theory, abstract groups and      72Ч73
Set theory, Bourbaki group and      15Ч17
Set theory, categories and      17Ч21
Set theory, classes and      11Ч12
Set theory, Cohen and      65Ч66
Set theory, comprehension principle and      10Ч11
Set theory, connected sets and      163
Set theory, continuum hypothesis and      65Ч66
Set theory, decision problem and      146Ч147
Set theory, disadvantages of      14
Set theory, extensionality principle and      10
Set theory, fields and      33Ч36
Set theory, fractals and      144Ч145 159Ч164
1 2 3 4 5
       © Ёлектронна€ библиотека попечительского совета мехмата ћ√”, 2004-2019
Ёлектронна€ библиотека мехмата ћ√” | Valid HTML 4.01! | Valid CSS! ќ проекте