Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: The Mathematical Century: The 30 Greatest Problems of the Last 100 Years
Àâòîðû: Odifreddi P., Sangalli A., Dyson F.
Àííîòàöèÿ: The twentieth century was a time of unprecedented development in mathematics, as well as in all sciences: more theorems were proved and results found in a hundred years than in all of previous history. In The Mathematical Century , Piergiorgio Odifreddi distills this unwieldy mass of knowledge into a fascinating and authoritative overview of the subject. He concentrates on thirty highlights of pure and applied mathematics. Each tells the story of an exciting problem, from its historical origins to its modern solution, in lively prose free of technical details.
Odifreddi opens by discussing the four main philosophical foundations of mathematics of the nineteenth century and ends by describing the four most important open mathematical problems of the twenty-first century. In presenting the thirty problems at the heart of the book he devotes equal attention to pure and applied mathematics, with applications ranging from physics and computer science to biology and economics. Special attention is dedicated to the famous ''23 problems'' outlined by David Hilbert in his address to the International Congress of Mathematicians in 1900 as a research program for the new century, and to the work of the winners of the Fields Medal, the equivalent of a Nobel prize in mathematics.
This eminently readable book will be treasured not only by students and their teachers but also by all those who seek to make sense of the elusive macrocosm of twentieth-century mathematics.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2004
Êîëè÷åñòâî ñòðàíèö: 223
Äîáàâëåíà â êàòàëîã: 08.10.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Mathematics, general, Fields Medal and 4—6
Mathematics, general, fragmentation of 2 25—26
Mathematics, general, harmonic ratios and 39—40
Mathematics, general, incompleteness theorem and 13—14
Mathematics, general, increased publication and 2
Mathematics, general, modern quality of 2—3
Mathematics, general, paradoxes and 11—14
Mathematics, general, specialization and 2
Mathematics, pure: discrete geometry and 87—91
Mathematics, pure: Fermat's last theorem and 26—27 82—87
Mathematics, pure: fields and 33—36
Mathematics, pure: fixed-point theorem and 37—39
Mathematics, pure: fragmentation and 25—26
Mathematics, pure: group classification and 71—77
Mathematics, pure: hyperreal numbers and 59—63
Mathematics, pure: incompleteness theorem and 47
Mathematics, pure: Lebesgue measure and 29—33
Mathematics, pure: minimal surfaces and 47—51
Mathematics, pure: number theory and 82—87
Mathematics, pure: polyhedra and 27—28
Mathematics, pure: set theory and 63—66
Mathematics, pure: singularity theory and 66—71
Mathematics, pure: spheres and 27—28
Mathematics, pure: theory of distributions and 52—56
Mathematics, pure: topology and 56—59 78—82 see
Mathematics, pure: transcendental numbers and 39—43
Mather, John 71
Mathieu, Emile 76
Matrices 74
Matyasevitch, Yuri 148
Maximum/minimum problems 47—51 110—112
Maxwell's equations 58 107
Mayas 33
McCarthy, John 149 185
McCullen, Curtis 163 184
McCulloch, Warren 141
McCune, William 142
Meeks, William 50 144
Membranes 136
Menger sponge 161
Mersenne primes 167—168
Mertens, Franz 159 182
Metboies nouvelles de la mecanique celeste (Poincare) 131
Method of exhaustion 31
Method of least squares 118
Mills, Robert 75
Milnor, John 57—59 81 176 183—184
Minimal Model Program 82
Minimal surfaces 47—51
Minimax theorem 110—112
Minsky, Marvin 149 185
Mirror Symmetry 137
Mischaikow, Konstantin 153
Mittag-Leffler, Goesta 5—6
Model theory 59—63
Modular arithmetic 35 179 182
Moebius strip 78 173
Moebius, Augustus 78—79 159 182
Moise, Edwin 57
Monotonic functions 29 39
Monte Carlo method 118
Montgomery, Deane 73
Moon 129 152
Moonlight conjecture 137 182
Mordell, Leo 85 147 171—172 182
Morgenstern, Oscar 111
Mori, Shigefumi 82 184
Morse, Marston 69
Moser, Jurgen 131—132 184
Mother structures 17
Mrozek, Marian 153
MUSIC 39—40
Naive set theory 10—11 21—22
Nash, John 111 185
Natural numbers 33—34
Nature xi—xvi 1 39
negative numbers 33—34 68—71
Neurology 141
Newell, Allen 149 185
Newton, Isaac xii
Newton, Isaac, brachistochrone and 48
Newton, Isaac, calculus and 128—132
Newton, Isaac, curves and 105
Newton, Isaac, fluxions of 60—61
Newton, Isaac, geometry and 45—46
Newton, Isaac, inertia and 128—129
Newton, Isaac, infinitesimals and 60—61
Newton, Isaac, laws of motion and 128
Newton, Isaac, surface of revolution and 48
Newton, Isaac, three-body problem and 129—130
Nobel prize 5—6 71 75 185
Nobel Prize, Arrow and 96 124
Nobel Prize, Crick and 97
Nobel Prize, Debreu and 124
Nobel Prize, Kantorovich and 121
Nobel Prize, Koopmans and 121
Nobel Prize, Nash and 111
Nobel Prize, Schroedinger and 114
Nobel Prize, Watson and 97
Non-Euclidean geometry 43—47 80—82
Nonlinearity xiv
Norton, Simon 137 182
Novikov, Pavel 128 183
Novikov, Petr 77
Novikov, Sergei 57 104 176
Number theory, algebra and 171 see
Number theory, consistency and 46—47
Number theory, cryptography and 178—180
Number theory, elementary proofs and 172
Number theory, factorization and 178—180
Number theory, Fermat's last theorem and 26—27 43 82—87 147—148 172
Number theory, geometry and 171
Number theory, incompleteness theorem and 47
Number theory, modular arithmetic and 179 182
Number theory, perfect numbers problem and 166—168
Number theory, Riemann hypothesis and 168—172
Number theory, theory of congruences and 167—168
Number theory, transcendental numbers and 39—43
Odifreddi, Piergiorgio xii—xiii
Odlyzko, Andrew 159
On the Three-Body Problem and the Equations of Dynamics (Poincare) 131
Optimization theory 93 120—122
Orbital motion 128—132
Orbital motion, chaos theory and 151—154
Ordered structures 16
Oresme 45
Orientation 78
Oscar prize 130—131
P = NP problem 176—180 182
Pacioli, Luca 116
Pareto, Vilfredo 122
Pascal 146
Pascal, Blaise xi 116
Peano, Giuseppe 31—32 53
Penrose, Roger xiv—xv 102—104
Perfect numbers 166—168 181
Permutation groups 72
Pfleger, Helmut 150—151
Philosophical Investigations (Wittgenstein) 140
photons 94—95
Physics 182 185
Physics, atomic symmetry and 74—75
Physics, Bohr and 93
Physics, crystallography and 102—104
Physics, delta function and 54
Physics, Einstein and 93—94
Physics, electroweak theory and 75
Physics, EPR paradox and 94—95
Physics, force unification and 75
Physics, inertia and 128—129
Physics, knot theory and 136—137
Physics, laws of motion and 128
Physics, Lie groups and 74—77
Physics, Mandelbrot and 164
Physics, principle of minimal action and 49
Physics, quantum mechanics xiii—xiv 54—56 93—95 112—116 185
Physics, reality and 93—94
Physics, relativity and 107
Physics, theory of everything and 75
Physics, topology and 58 42—43
Piaget, Jean 126
Pitts, Walter 141
Plateau, Joseph 49—50 181
Podolski, Boris 94
Poincare, Henri 4 131 182
Poincare, Henri, conjecture of 28 174—176
Poincare, Henri, hyperbolic geometry and 44
Polyhedra 27—33
Polynomial time 176—180
Pontryagin, Lev 175
Positive numbers 33—34 68—71
Post, Emil 126 128 145
Poussin, Charles Jean de La Vallee 170
Prigoginc, Ilya 71 185
Prime field 36
Prime number theorem 169
Prime numbers 77
Prime numbers, computers and 139
Prime numbers, Euler and 139—140
Prime numbers, Fermat's last theorem and 26—27 43 82—87 147—148 172
Prime numbers, Greeks and 168—169
Prime numbers, Mersenne primes and 167—168
Prime numbers, Riemann hypothesis and xv-xvi 43 168—172 181—182
Prime numbers, twin primes conjecture and 170—171
Principia (Newton) 45—46 48 129
Principle of minimal action 49
Principles of Quantum Mechanics, The (Dirac) 54
Prisoner's Dilemma 111
Private keys 178—180
Probability theory 116—119
Problem of the needle 118
Projective plane 79—80
PROLOG 146
Proof theory 47
Proper Classes 11—12
Prussians 109
Pseudospheres 105—106
Psychology 125—128
Public keys 178—180
Push-down automata 127
Putnam, Hilary 148
Pythagoreans 9 33 46 166
Pythagoreans, Fermat's last theorem and 83
Pythagoreans, functional analysis and 113
Pythagoreans, harmonic ratios and 39
Pythagoreans, hyperbolic geometry and 44
Pythagoreans, irrational numbers and 34
Pythagoreans, perfect numbers and 167
Pythagoreans, rational numbers and 39—40
QUADRATIC DIOPHANTINE EQUATIONS 179
Quadratic reciprocity 147
Quantifiers 145
quantum mechanics 54 185
Quantum mechanics, axiomatization and 112—116
Quantum mechanics, Bohr and 93
Quantum mechanics, complex numbers and xiii—xiv
Quantum mechanics, EPR paradox and 94—95
Quantum mechanics, index theorem and 55—56
Quantum mechanics, linearity and xiv
Quantum mechanics, reality and 93—94
Quasi-crystals xiv—xv 103—104
Quasi-periodic motion 132
Queen Dido 47
Quevedo, Leonardo Torres y 150
Quinquennial plans 120
Rado, Tibor 57
Raleigh, Walter 87
Ramanujan 171—172
Rational numbers 33—34 166
Rational numbers, Fermat's last theorem and 82—87
Rational numbers, Pythagoreans and 39—40
Rational numbers, transcendental numbers and 39—43
Reagan, Ronald 95 124
Real numbers 34—35
Real numbers, algebraic structures and 16
Real numbers, complex numbers and xiii—xiv
Real numbers, consistency and 46—47
Real numbers, hyperreal 59—63
Real numbers, infinity and 63—66
Real numbers, surreal numbers and 63
reality 93—94
Regular language 127
Relativity, general theory of 107—108
Ribet, Ken 87
Ribonucleic acid (RNA) 97
Riele, Herman te 159
Riemann hypothesis xv—xvi 43 181—182
Riemann hypothesis, description of 168—172
Riemann hypothesis, Hilbert on 43
Riemann integral 31—32
Riemann manifolds 56—59 106—108
Riemann, Bernhard 31 78—79 106—107
Riesz, Friedrich 114
Robbins, Herbert 142 182
Robinson, Abraham 62
Robinson, Julia 148
Rokhlin, Vladimir 57—58 175
Rosen, Nathan 94
Roth, Klaus 41 183
Rousseau, Jean-Jacques 109
Royal Society of London 54
Ruffini, Paolo 72
Russell paradox 11—12 22—23
Russell, Bertrand 11
Russell, Bertrand, Boolean algebra and 140—141
Russell, Bertrand, decision problem and 147
Russell, Bertrand, type theory and 20
Russians 109 120
Saddles 69
Salam, Abdus 75 185
Saturn 130
Scarf, Herbert 124
Schechtman, Daniel 103
schemas 171
Schlesinger, Karl 123
Schmidt, Erhard 113
Schneider, Thorald 43
Schroedinger, Erwin xiii 114 185
Schwartz, Laurent 54—55 115 183
Scott, Dana 24 185
Scotus, Duns 63
Segre, Corrado 82
Selberg, Atle 172 183—184
Self-reproduction 96—97
Self-similarity 160—161
Semicontinuous functions 39
Serre, Jean-Pierre 175 183—184
Set theory, abstract groups and 72—73
Set theory, Bourbaki group and 15—17
Set theory, categories and 17—21
Set theory, classes and 11—12
Set theory, Cohen and 65—66
Set theory, comprehension principle and 10—11
Set theory, connected sets and 163
Set theory, continuum hypothesis and 65—66
Set theory, decision problem and 146—147
Set theory, disadvantages of 14
Set theory, extensionality principle and 10
Set theory, fields and 33—36
Set theory, fractals and 144—145 159—164
Ðåêëàìà