Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Rektorys K. — Survey of Applicable Mathematics.Volume 2.
Rektorys K. — Survey of Applicable Mathematics.Volume 2.



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Survey of Applicable Mathematics.Volume 2.

Автор: Rektorys K.

Аннотация:

This major two-volume handbook is an extensively revised, updated second edition of the highly praised Survey of Applicable Mathematics, first published in English in 1969.
The thirty-seven chapters cover all the important mathematical fields of use in applications: algebra, geometry, differential and integral calculus, infinite series, orthogonal systems of functions, Fourier series, special functions, ordinary differential equations, partial differential equations, integral equations, functions of one and several complex variables, conformal mapping, integral transforms, functional analysis, numerical methods in algebra and in algebra and in differential boundary value problems, probability, statistics, stochastic processes, calculus of variations, and linear programming. All proofs have been omitted. However, theorems are carefully formulated, and where considered useful, are commented with explanatory remarks. Many practical examples are given by way of illustration. Each of the two volumes contains an extensive bibliography and a comprehensive index.
Together these two volumes represent a survey library of mathematics which is applicable in many fields of science, engineering, economics, etc.
For researchers, students and teachers of mathematics and its applications.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd

Год издания: 1994

Количество страниц: 978

Добавлена в каталог: 30.08.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
MacDonald functions      I 703
Maclaurin formula      I 397
Maclaurin inequality      II 649
Magnitude of vector      I 168 I
Mainardi equations      I 333
Maintenance strategy      II 786
Majorant of function      I 525
Majorant of series      I 346 I II
Mapping      II 344 see
Mapping, conformal      II 289 ff
Mapping, continuous      I 418
Mapping, contractive      II 345
Mapping, definition      I 46 II
Mapping, injective      II 345
Mapping, into set, onto set      I 46 II
Mapping, linear (systems of algebraic equations), composition of      I 63
Mapping, linear (systems of algebraic equations), definition      I 63
Mapping, linear (systems of algebraic equations), matrix notation for      I 64
Mapping, one-to-one, between sets      I 46
Mapping, one-to-one, between sets, substitution      I 64
Mapping, regular      I 418
Mapping, surjective      II 344
Markov chain      II 804
Markov chain, Chapman — Kolmogorov equations      II 805
Markov chain, homogeneous      II 804
Markov chain, Markov property      II 804
Markov chain, transition, matrix      II 804
Markov chain, transition, probability      II 804
Markov inequality      II 729
Markov process      II 700
Markov process, failure intensity      II 802
Markov process, Ghapman — Kolmogorov equation      II 800
Markov process, homogeneous      II 800
Markov process, initial and stationary distribution      II 800
Markov process, Kolmogorov differential equations      II 800 ff
Markov process, Markov property      II 700
Markov process, transition, intensity      II 801
Markov process, transition, probability      II 709
Markov theorem      II 732
Mass, integral calculus for, curves in space      I 620
Mass, integral calculus for, plane curves      I 618
Mass, integral calculus for, plane figures      I 623
Mass, integral calculus for, solids      I 626
Mass, integral calculus for, surfaces      I 620
Mass, matrix      II 465
Mathematical physics, problems of      II 147 II II
Matrix, matrices, analysis      II 110
Matrix, matrices, banded      II 613
Matrix, Matrices, characteristic      I 52
Matrix, Matrices, characteristic, polynomial of      I 50
Matrix, Matrices, complex conjugate      I 52
Matrix, Matrices, congruent      I 64
Matrix, Matrices, conjunctive      I 68
Matrix, Matrices, decomposed into diagonal blocks      I 55 I
Matrix, Matrices, diagonal      I 56
Matrix, matrices, diagonally dominant      II 619
Matrix, Matrices, diagonals, principal and secondary      I 26 I
Matrix, matrices, eigenvalues of      I 59
Matrix, matrices, elementary divisors of      I 58
Matrix, matrices, full      II 626 II
Matrix, matrices, functions of      II 110 II
Matrix, matrices, fundamental      II 103 II
Matrix, matrices, Gram      II 422 II
Matrix, Matrices, Hermitian      I 53
Matrix, matrices, Hilbert      II 611
Matrix, matrices, identity      I 50 II
Matrix, matrices, ill-conditioned      II 605
Matrix, matrices, in lower Hessenberg form      II 638
Matrix, matrices, in upper Hessenberg form      II 638
Matrix, matrices, indefinite      I 67
Matrix, matrices, inverse      I 50 II
Matrix, matrices, Jordan      I 60 II
Matrix, matrices, Jordan, block      I 60 II
Matrix, matrices, lambda- $(\lambda -)$      I 56
Matrix, matrices, lambda- $(\lambda -)$, divisors      I 57
Matrix, matrices, lambda- $(\lambda -)$, elementary transformation      I 56
Matrix, matrices, lambda- $(\lambda -)$, equivalence      I 56
Matrix, matrices, lambda- $(\lambda -)$, invariant factors      I 57
Matrix, matrices, lambda- $(\lambda -)$, rational canonical form      I 57
Matrix, matrices, lower triangular      II 596
Matrix, matrices, mass      II 465
Matrix, matrices, minor, of order      I 28
Matrix, matrices, Moore — Penrose generalized inverse      II 600
Matrix, matrices, multiplication of      I 49
Matrix, Matrices, n-rowed square      I 26
Matrix, matrices, negative definite      I 67
Matrix, matrices, non-defective      II 631
Matrix, Matrices, non-singular      I 50
Matrix, matrices, of linear algebraic system      I 33 II
Matrix, Matrices, operations on      I 49 ff
Matrix, Matrices, orthogonal      I 52 I
Matrix, Matrices, partitioned into blocks      I 53
Matrix, matrices, plane rotation      II 633
Matrix, matrices, positive definite      I 67 II
Matrix, Matrices, product of      I 49
Matrix, matrices, profile      II 613
Matrix, matrices, pseudoinverse      II 609
Matrix, matrices, rank, definition and theorems      I 26 ff
Matrix, matrices, reflection      II 641
Matrix, Matrices, regular      I 50
Matrix, matrices, sequence of      II 111
Matrix, matrices, series of      II 111
Matrix, Matrices, signature of form      I 67
Matrix, Matrices, similar      I 59 II
Matrix, matrices, skew-symmetric      I 51
Matrix, matrices, sparse      II 611 II
Matrix, Matrices, square      I 50
Matrix, matrices, stiffness      II 423
Matrix, matrices, symmetric      I 51
Matrix, matrices, Toeplitz      II 611
Matrix, matrices, trace of      I 53
Matrix, Matrices, transposed      I 26
Matrix, Matrices, triangular      I 55
Matrix, matrices, tridiagonal      II 612
Matrix, Matrices, unitary      I 53
Matrix, matrices, upper triangular      I 55 II
Matrix, Matrices, upper triangular, eigenvalues of      I 59
Matrix, matrices, Vandermonde      II 611
Matrix, matrices, well-conditioned      II 605
Maxima of functions      I 392 ff I
Maximal solution of ordinary differential equation      II 7
Maximum, likelihood, estimator      II 749
Maximum, likelihood, estimator, for censored random samples      II 790 ff
Maximum, likelihood, estimator, method      II 749 ff
Maximum, principle, for harmonic functions      II 177
Maximum, principle, for heat equation      II 200
Mean(mean value)      II 698
Mean(mean value) of linear transformation of random variables      II 728
Mean(mean value) of stochastic process      II 810 II
Mean(mean value), conditional      II 706
Mean(mean value), curvature      I 278
Mean(mean value), deviation      II 701
Mean(mean value), sample      II 736
Mean, curvature      I 278
Mean, torsion      I 279
Mean-value theorem(s)      I 387 I
Mean-value theorem(s) for double integrals      I 580
Mean-value theorem(s) for harmonic functions      II 180 II
Mean-value theorem(s), generalization for several variables      I 415
Mean-value theorem(s), generalized      I 388
Measurable, functions      I 561
Measurable, sets      I 560
Median      II 700
Median sample      II 740
Mellin transform      II 568
Meromorphic function      II 267
Meromorphic function of several complex variables      II 288
Mesh point      II 546 II
Mesh point, boundary      II 563
Mesh point, inner      II 562
Mesh point, interior      II 562
Method(s) of discretization in time      II 215
Method(s) of finite differences      II 546 ff
Method(s) of finite elements      II 428 ff
Method(s) of parameters      II 28 II
Method(s) of performing conformal mapping      II 296 ff
Method(s) of Rothe      II 215
Method(s) of Schwarz quotients      II 87
Method(s) of separation of variables      II 14 II
Method(s) of transfer and normalized transfer of boundary conditions      II 519 ff
Method(s) of variation of parameters      II 18 II II II
Method(s) Ritz      II 422
Method(s) Runge — Kutta      II 492 ff
Method(s), Fourier      II 534 ff
Method(s), Galerkin      II 427
Metric      II 323
Metric axioms      II 323
Metric invariant      II 330
Metric spaces      II 323 ff
Metric spaces, linear and other operators in      II 344 ff
Metric tensor of space      I 247
Meusnier theorem      I 327
Milne device      II 510
Milne formula      II 511
Minima of functions      I 392 I
Minimal angle condition      II 448
Minimax, approximation      II 669
Minimax, principle      II 86
Minimum of functional of energy      II 354 II II
Minkowski inequality      I 9
Minor in determinant      I 30
Mixed derivatives, interchangeability      I 408
Mixed problems for partial differential equations      II 150 II II II
Mixed process (ARMA)      II 813 II
Mixed product of three vectors      I 230
MODE      II 700
Modulus of continuity      II 071
Modulus of continuity, uniform      II 671
Modulus of vector      I 227
Moivre theorem      I 11
Moivre — Laplace theorem      II 733
Moment(s)      II 698
Moment(s) of inertia, formulae for, plane figures      I 95 ff
Moment(s) of inertia, formulae for, solids      I 104 ff
Moment(s) of inertia, integral calculus for, curves in space      I 620
Moment(s) of inertia, integral calculus for, plane curves      I 619
Moment(s) of inertia, integral calculus for, plane figures      I 624
Moment(s) of inertia, integral calculus for, solids      I 628
Moment(s) of inertia, integral calculus for, surfaces      I 631
Moment(s), central      II 698
Moment(s), method of      II 750 ff
Moment(s), mixed      II 708
Moment(s), sample      II 737
Monodromy theory      II 277
Monogenic function      II 246
Monotone operator      II 372
Monotonic functions      I 391
Monotonic sequences      I 341
Montpellier conoid      I 224
Moore — Penrose generalized inverse of matrix      II 609
Movable (free) ends of admissible curves      II 395
Moving, average (MA)      II 812 II
Moving, polhode      I 127
Moving, trihedron and Frenet formulae      I 268 ff
Multigrid method      II 625
Multiindex      II 339
Multiple, angle formulae of trigonometric functions      I 74
Multiple, comparison      II 782
Multiple, point of curve      I 261
Multiplication of matrices      I 49
Multiplication of tensors      I 255
Multiplication of vectors      I 228 ff
Multiplicity of eigenvalue      I 84 I
Multipliers, Lagrange mehod      I 442
Multishooting method      II 518
Multivariate, analysis      II 785 ff
Multivariate, distribution      II 704 II
Multivariate, process      II 797
n-component (complex) vector      I 24
n-coordinate (complex) vector      I 24
N-dimensional sphere      II 281
n-dimensional sphere in Euclidean space      II 321
n-dimensional sphere in metric space      II 326
n-dimensional torus      II 280
n-dimensional vector space      I 24
Nabla operator      I 234
Napier rule      I 84
Natural logarithms, base of      I 341
Natural numbers      I 2
Natural numbers, sums of powers of      I 16
Navier — Stokes equations      II 203
Negative half line      I 174
Negative orientation      I 229
Neighbourhood of point      I 366 I II II
Neighbourhood of point in metric space      II 326
Neil parabola      I 126
Nephroid      I 133
Nets (finite difference method)      II 546 II
Neumann functions      I 700
Neumann problem      II 176 see
Neumann solution for Laplace and Poisson equations      II 177 ff
Newton definite integral      I 518
Newton formula, binomial theorem      I 19
Newton interpolation formula      II 680
Newton interpolation polynomial, general      II 678
Newton method for attaining roots of algebraic equations      II 658 II
Newton potential      II 175
Newton problem      II 176
Newton — Cotes quadrature formula      I 556
Newton — Fourier method in conformal mapping      II 312
Nicomedes conchoid      I 152
Nodal parameters      II 430
Node(s) of curves      I 291
Node(s) of finite element      II 430
Node(s) of interpolation      II 675
Node(s) of quadrature formula      I 555
Node(s), (differential equations)      II 26
Non-developable sinface      I 316
Non-zero function in $L_{2}$      I 664 II
Nonbasic variables      II 837
Nonlinear elliptic boundary value problems      II 210
Nonlinear partial diffeiential equations of first order      II 160 ff
Nonlinear regression model      I 779
Nonlinear systems, numerical solution      II 662
Nonsingular conic sections      I 189
Norm of element      II 331
Norm of element, axioms of      II 331
Norm of function      I 663 I II
Norm of matrix      II 604
Norm of matrix, spectral      II 604
Norm of operator      II 348
Norm of partition      I 513 I
Norm of tangent vector      I 266
Norm of vector      I 227 II
Norm of vector, Euclidean      II 603
Norm of vector, maximum      II 604
Norm of vector, sum      II 604
Norm of vector, uniform      II 604
Normal acceleration      I 276
Normal cycloid      I 127
Normal distribution      II 714
Normal epicycloid      I 130
Normal equation of straight line      I 177
Normal equations      II 770
Normal form (of differential equation)      II 68
Normal fundamental system      II 55
Normal hypocycloid      I 130
Normal plane      I 271
Normal system of differential equations      II 100
Normal vector to plane      I 200
1 2 3 4 5 6 7 8 9 10 11 12 13 14
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте