Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Rektorys K. — Survey of Applicable Mathematics.Volume 2.
Rektorys K. — Survey of Applicable Mathematics.Volume 2.



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Survey of Applicable Mathematics.Volume 2.

Автор: Rektorys K.

Аннотация:

This major two-volume handbook is an extensively revised, updated second edition of the highly praised Survey of Applicable Mathematics, first published in English in 1969.
The thirty-seven chapters cover all the important mathematical fields of use in applications: algebra, geometry, differential and integral calculus, infinite series, orthogonal systems of functions, Fourier series, special functions, ordinary differential equations, partial differential equations, integral equations, functions of one and several complex variables, conformal mapping, integral transforms, functional analysis, numerical methods in algebra and in algebra and in differential boundary value problems, probability, statistics, stochastic processes, calculus of variations, and linear programming. All proofs have been omitted. However, theorems are carefully formulated, and where considered useful, are commented with explanatory remarks. Many practical examples are given by way of illustration. Each of the two volumes contains an extensive bibliography and a comprehensive index.
Together these two volumes represent a survey library of mathematics which is applicable in many fields of science, engineering, economics, etc.
For researchers, students and teachers of mathematics and its applications.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd

Год издания: 1994

Количество страниц: 978

Добавлена в каталог: 30.08.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Fourier series      I 673 I
Fourier series in 2 variables      I 688
Fourier series in complex form      I 687
Fourier series, differentiation and integration of      I 687
Fourier series, expansions of some important functions      I 682 ff
Fourier series, generalized      I 673 II II
Fourier series, generalized, in Hilbert space      II 336
Fourier series, harmonic analysis      I 691
Fourier series, pointwise convergence      I 678
Fourier series, trigonometric      I 678
Fourier transform      II 568
Fourier transform, fast      I 691 II
Fourier transform, n-dimensional      II 584
Fraction defective      II 792
Frame of bidisc      II 279
Frazer diagram      II 681
Frechet derivative      II 373
Frechet differential      II 373
Fredholm, alternative      II 225 II
Fredholm, equations      II 223
Fredholm, integral equations      II 223 ff
Fredholm, integral equations, approximate, determination of first eigenvalue      II 591
Fredholm, integral equations, approximate, solution, by Galerkin method      II 589
Fredholm, integral equations, approximate, solution, by replacement of kernel by degenerate one      II 589
Fredholm, integral equations, approximate, solution, by Ritz method      II 589
Fredholm, integral equations, approximate, solution, by successive approximations      II 585
Fredholm, integral equations, approximate, solution, using quadrature formulae      II 586
Fredholm, integral equations, with symmetric kernels      II 231
Fredholm, theorems      II 225
Free oscillations      I 156 I
Free vectors      I 226
Frenel integrals      I 544 I
Frenet formulae      I 270
Frequency of event      II 690
Frequency of observation      II 741
Frequency of observation, cumulative and relative      II 741
Frequency, class      II 742
Frequency, empirical and theoretical      II 761
Frequency, marginal      II 764
Frequency, Stability      II 690
Frequency, table      II 741
Frobenius theorem      I 33
Function(s) of bounded variation      I 370
Function(s) of class $T_{r}$      II 375 II
Function(s) of one complex variable      II 243 ff
Function(s) of one complex variable, analytic      II 276 II
Function(s) of one complex variable, analytic, continuation of      II 275 II
Function(s) of one complex variable, analytic, natural domain of      II 276
Function(s) of one complex variable, Cauchy — Riemann equations      II 246
Function(s) of one complex variable, Cauchy, integral formula      II 253
Function(s) of one complex variable, Cauchy, theorems      II 252 II II
Function(s) of one complex variable, Cauchy, type of integrals      II 255
Function(s) of one complex variable, derivative      II 246 II
Function(s) of one complex variable, domain of definition      II 244
Function(s) of one complex variable, fundamental concepts      II 243 ff
Function(s) of one complex variable, holomorphic      II 247
Function(s) of one complex variable, integral of      II 249 ff
Function(s) of one complex variable, limit and continuity      II 245 II
Function(s) of one complex variable, Liouville theorem      II 269
Function(s) of one complex variable, logarithmic      II 272 ff
Function(s) of one complex variable, meromorphic      II 267
Function(s) of one complex variable, Plemelj formulae      II 257
Function(s) of one complex variable, pole      II 267
Function(s) of one complex variable, regular      II 247
Function(s) of one complex variable, residue theorem      II 270
Function(s) of one complex variable, series      II 249 ff
Function(s) of one complex variable, series, Laurent      II 265
Function(s) of one complex variable, series, Taylor      II 264
Function(s) of one complex variable, simple      II 248
Function(s) of one complex variable, univalent in domain      II 248
Function(s) of several complex variables      II 277 ff
Function(s) of several complex variables, "edge of the wedge" theorem      II 286
Function(s) of several complex variables, "Kugelsatz"      II 286
Function(s) of several complex variables, analytic continuation of      II 286
Function(s) of several complex variables, ball      II 278
Function(s) of several complex variables, bidisc      II 279
Function(s) of several complex variables, biholomorphic mapping      II 288
Function(s) of several complex variables, Cauchy integral formula      II 285
Function(s) of several complex variables, Cauchy — Riemann equations      II 283
Function(s) of several complex variables, complete      II 280
Function(s) of several complex variables, complex, derivative      II 282
Function(s) of several complex variables, complex, differentiable function      II 282
Function(s) of several complex variables, complex, differential      II 282
Function(s) of several complex variables, complexified light cone      II 280
Function(s) of several complex variables, distinguished boundary      II 279
Function(s) of several complex variables, domain of holomorphy      II 287
Function(s) of several complex variables, frame      II 279
Function(s) of several complex variables, holomorphic      II 283
Function(s) of several complex variables, holomorphic, mapping      II 288
Function(s) of several complex variables, holomorphic, relativistic field      II 280 II
Function(s) of several complex variables, identity theorem      II 285
Function(s) of several complex variables, light cone      II 280
Function(s) of several complex variables, light cone, backward      II 281
Function(s) of several complex variables, light cone, forward      II 281
Function(s) of several complex variables, meromorphic      II 288
Function(s) of several complex variables, pluriharmonic      II 284
Function(s) of several complex variables, point of indetermination      II 288
Function(s) of several complex variables, polycylinder      II 278
Function(s) of several complex variables, polydisc      II 278
Function(s) of several complex variables, polydisc, with vectorial radius      II 279
Function(s) of several complex variables, Reinhardt domain      II 280
Function(s) of several complex variables, Taylor expansion      II 285
Function(s) of several complex variables, tube domain      II 280
Function(s) of several complex variables, uniqueness theorem      II 285
Function(s) of two or more variables      I 402 ff
Function(s) of two or more variables, extremes      I 438 ff
Function(s) of two or more variables, important formulae      I 446 ff
Function(s) of two or more variables, introduction of new variables      I 432 ff
Function(s) of type B      I 574 I
Function(s) with compact support      II 339
Function(s), abstract      II 364 see
Function(s), algebraic      I 364
Function(s), analytic      II 276 II
Function(s), approximation      I 398
Function(s), bei x, ber x      I 704
Function(s), bounded      I 366
Function(s), composite      I 361 I
Function(s), composite, differentiation of      I 382 I
Function(s), concave      I 391
Function(s), continuity of      I 366 I
Function(s), continuous, on curve      I 576
Function(s), continuous, on surface      I 576
Function(s), continuously extensible      I 405
Function(s), convex      I 391
Function(s), decomposition of      I 362
Function(s), decreasing      I 390
Function(s), dependence of      I 420 ff
Function(s), derivatives of      I 377 ff
Function(s), differentiable      I 378 I
Function(s), domain of definition of      I 359 I
Function(s), elementary      I 364
Function(s), equal almost everywhere      I 560 II
Function(s), equicontinuous      I 639
Function(s), equivalent      I 664
Function(s), erf x, erfc x      I 551
Function(s), even      I 366
Function(s), exponential      I 365
Function(s), graphical representation of      I 394
Function(s), Green      II 93 II
Function(s), harmonic      II 175
Function(s), higher transcendental      I 365
Function(s), holomorfic      II 247
Function(s), homogeneous      I 416
Function(s), homogeneous, Euler theorem      I 416
Function(s), hyperbolic      I 90 ff
Function(s), implicit      I 423 I
Function(s), important formulae      I 400 ff I
Function(s), increasing      I 390
Function(s), inverse      I 362
Function(s), inverse, hyperbolic      I 92 ff
Function(s), inverse, trigonometric      I 86
Function(s), investigation of      I 393 ff
Function(s), kei x, ker x      I 705
Function(s), Lebesgue, integrable      I 562
Function(s), Lebesgue, measurable      I 561
Function(s), limits of      I 371 ff
Function(s), limits of, computation by l'Hospital rule      I 388 ff
Function(s), linear combination of      I 422
Function(s), linearly dependent, independent      I 422
Function(s), local dependency of      I 422
Function(s), mean-value theorem      I 414 ff
Function(s), measurable      I 561
Function(s), meromorphic      II 267 II
Function(s), monotonic      I 391
Function(s), new variables, introduction and transformations      I 432 ff
Function(s), normed (normalized)      I 670
Function(s), normed (normalized), with weight function      I 673
Function(s), odd      I 366
Function(s), piecewise, continuous      II 75
Function(s), piecewise, smooth      I 405 II
Function(s), points of inflection      I 391
Function(s), rational      I 364
Function(s), real      I 359
Function(s), regular      II 247
Function(s), relative maximum and minimum of      I 392 I
Function(s), smooth      I 379
Function(s), special, of mathematical physics      I 713
Function(s), square integrable      I 565 I II
Function(s), stationary pouts of      I 393
Function(s), transcendental      I 364 ff
Function(s), uniformly bounded      I 638
Function(s), vanishing at infinity      II 175
Functional(s), analysis      II 319 ff
Functional(s), coercive      II 370
Functional(s), complex      II 345
Functional(s), convex      II 370
Functional(s), convex, strictly      II 370
Functional(s), determinant      I 418
Functional(s), extension of      II 349
Functional(s), extremum of      II 377
Functional(s), extremum of, strong      II 377
Functional(s), extremum of, weak      II 377
Functional(s), maximum and minimum along curve      II 374 II
Functional(s), of energy      II 204 II II II
Functional(s), quadratic      II 354 II
Functional(s), real      II 345
Functional(s), variation of      II 379
Fundamental equation      II 70
Fundamental matrix      II 103 II
Fundamental sequence      II 327
Fundamental solution of Laplace and heat conduction equatios      II 182 II II
Fundamental system      II 53 II
Fundamental system, standard      II 55
g.l.b. (greatest lower bound)      I 5
Galerkin method      II 427 II
Galerkin method, semidiscrete      II 464
Gamma function      I 546
Gamma function, graph and table      I 548
Gateaux, derivative      II 372
Gateaux, differential      II 367 II
Gateaux, differential, second      II 368
Gauss — Legendre quadrature formula      I 556
Gauss — Markov theorem      II 770
Gauss — Newton method      II 780
Gauss — Ostrogradski theorem      I 613
Gauss — Seidel method      II 618
Gauss(ian), curvature on surface      I 330
Gauss(ian), differential equation      I 710 II II
Gauss(ian), elimination      II 596
Gauss(ian), function      I 550
Gauss(ian), fundamental equation for surfaces      I 333
Gauss(ian), hypergeometric equation      I 710 II
Gauss(ian), integral      I 542
Gauss(ian), interpolation formula      II 681
Gauss(ian), quadrature formula      I 555
Gauss(ian), theorem      I 613
Gauss(ian), theorem egregium      I 333
Gauss(ian), theorem, in vector notation      I 240 I
General Hermite element, one-dimensional      II 433
General integral of differential equations      II 9 II II
General Lagrange element, one-dimensional      II 433
General Lagrange element, two-dimensional      II 435
General one-step method      II 489
General one-step method, asymptotic error estimate      II 490 II
General one-step method, consistent      II 489
General one-step method, convergence of      II 489
General one-step method, error bound of      II 489
General one-step method, local error of      II 489
General one-step method, order of      II 489
General one-step method, regular      II 489
General power      I 13 II
General solution of differential equations      II 9 II II
Generalized derivatives      II 339
Generalized Glairaut equation      II 163
Generalized polar coordinates      I 588
Generalized solution      II 194 II II II
Generalized spherical coordinates      I 593
Generating, curve      I 127
Generating, function, for Bessel functions      I 694
Generating, function, for Legendre polynomials      I 707
Generating, lines      I 221
Generators      I 221
Geodesic curvature      I 334
Geometric mean      I 9
Geometric sequence      I 16
Geometry, analytic      I 167 ff
Geometry, analytic, solid      I 195 ff
Geometry, differential      I 260 ff
Gershgorin, disc      II 629
Gershgorin, theorem      II 629
Givens method      II 640
Glivenko theorem      II 745
Gomory algorithm      II 863
Goodness of fit tests      II 760
Gradient of scalar field      I 232
Gradient of straight line      I 170
Gradient, curves on surface      I 335
Gradient, methods in linear programming      II 863
Graeffe method      II 654
Gragg method      II 514
Gram, determinant      I 423
Gram, matrix      II 422 II
Gravitational field, equation for particle moving in      II 146
Greatest lower bound (g.l.b.)      I 5
Green formula regarding symmetric problems      II 83
Green function      II 93 II
Green function for special regions      II 183 II
Green function in conformal mapping      II 303
Green function, construction      II 94
Green identities      I 615 I
Green resolvent      II 97
Green theorem      I 605
grid      II 430 II II see
Group(s), Abelian      I 47
Group(s), commutative      I 47
Group(s), continuous      I 713
Group(s), definition      I 47
Group(s), representation and special functions      I 713
Group(s), topologic      I 713
GROUPING      II 742 ff
Growth, curves      I 162 ff
Growth, law of      I 162
Growth, Robertson law of      I 164
Guldin rules      I 633
Haar condition      II 670
Hahn — Banach theorem      II 349
Half-angle formulae for trigonometric functions      I 74
Half-line, directed      I 174
Hamilton, differential equations      II 407
Hamilton, function      II 407
1 2 3 4 5 6 7 8 9 10 11 12 13 14
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте