Авторизация
Поиск по указателям
Rektorys K. — Survey of Applicable Mathematics.Volume 2.
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Survey of Applicable Mathematics.Volume 2.
Автор: Rektorys K.
Аннотация: This major two-volume handbook is an extensively revised, updated second edition of the highly praised Survey of Applicable Mathematics, first published in English in 1969.
The thirty-seven chapters cover all the important mathematical fields of use in applications: algebra, geometry, differential and integral calculus, infinite series, orthogonal systems of functions, Fourier series, special functions, ordinary differential equations, partial differential equations, integral equations, functions of one and several complex variables, conformal mapping, integral transforms, functional analysis, numerical methods in algebra and in algebra and in differential boundary value problems, probability, statistics, stochastic processes, calculus of variations, and linear programming. All proofs have been omitted. However, theorems are carefully formulated, and where considered useful, are commented with explanatory remarks. Many practical examples are given by way of illustration. Each of the two volumes contains an extensive bibliography and a comprehensive index.
Together these two volumes represent a survey library of mathematics which is applicable in many fields of science, engineering, economics, etc.
For researchers, students and teachers of mathematics and its applications.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: 2nd
Год издания: 1994
Количество страниц: 978
Добавлена в каталог: 30.08.2014
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Fourier series I 673 I
Fourier series in 2 variables I 688
Fourier series in complex form I 687
Fourier series, differentiation and integration of I 687
Fourier series, expansions of some important functions I 682 ff
Fourier series, generalized I 673 II II
Fourier series, generalized, in Hilbert space II 336
Fourier series, harmonic analysis I 691
Fourier series, pointwise convergence I 678
Fourier series, trigonometric I 678
Fourier transform II 568
Fourier transform, fast I 691 II
Fourier transform, n-dimensional II 584
Fraction defective II 792
Frame of bidisc II 279
Frazer diagram II 681
Frechet derivative II 373
Frechet differential II 373
Fredholm, alternative II 225 II
Fredholm, equations II 223
Fredholm, integral equations II 223 ff
Fredholm, integral equations, approximate, determination of first eigenvalue II 591
Fredholm, integral equations, approximate, solution, by Galerkin method II 589
Fredholm, integral equations, approximate, solution, by replacement of kernel by degenerate one II 589
Fredholm, integral equations, approximate, solution, by Ritz method II 589
Fredholm, integral equations, approximate, solution, by successive approximations II 585
Fredholm, integral equations, approximate, solution, using quadrature formulae II 586
Fredholm, integral equations, with symmetric kernels II 231
Fredholm, theorems II 225
Free oscillations I 156 I
Free vectors I 226
Frenel integrals I 544 I
Frenet formulae I 270
Frequency of event II 690
Frequency of observation II 741
Frequency of observation, cumulative and relative II 741
Frequency, class II 742
Frequency, empirical and theoretical II 761
Frequency, marginal II 764
Frequency, Stability II 690
Frequency, table II 741
Frobenius theorem I 33
Function(s) of bounded variation I 370
Function(s) of class II 375 II
Function(s) of one complex variable II 243 ff
Function(s) of one complex variable, analytic II 276 II
Function(s) of one complex variable, analytic, continuation of II 275 II
Function(s) of one complex variable, analytic, natural domain of II 276
Function(s) of one complex variable, Cauchy — Riemann equations II 246
Function(s) of one complex variable, Cauchy, integral formula II 253
Function(s) of one complex variable, Cauchy, theorems II 252 II II
Function(s) of one complex variable, Cauchy, type of integrals II 255
Function(s) of one complex variable, derivative II 246 II
Function(s) of one complex variable, domain of definition II 244
Function(s) of one complex variable, fundamental concepts II 243 ff
Function(s) of one complex variable, holomorphic II 247
Function(s) of one complex variable, integral of II 249 ff
Function(s) of one complex variable, limit and continuity II 245 II
Function(s) of one complex variable, Liouville theorem II 269
Function(s) of one complex variable, logarithmic II 272 ff
Function(s) of one complex variable, meromorphic II 267
Function(s) of one complex variable, Plemelj formulae II 257
Function(s) of one complex variable, pole II 267
Function(s) of one complex variable, regular II 247
Function(s) of one complex variable, residue theorem II 270
Function(s) of one complex variable, series II 249 ff
Function(s) of one complex variable, series, Laurent II 265
Function(s) of one complex variable, series, Taylor II 264
Function(s) of one complex variable, simple II 248
Function(s) of one complex variable, univalent in domain II 248
Function(s) of several complex variables II 277 ff
Function(s) of several complex variables, "edge of the wedge" theorem II 286
Function(s) of several complex variables, "Kugelsatz" II 286
Function(s) of several complex variables, analytic continuation of II 286
Function(s) of several complex variables, ball II 278
Function(s) of several complex variables, bidisc II 279
Function(s) of several complex variables, biholomorphic mapping II 288
Function(s) of several complex variables, Cauchy integral formula II 285
Function(s) of several complex variables, Cauchy — Riemann equations II 283
Function(s) of several complex variables, complete II 280
Function(s) of several complex variables, complex, derivative II 282
Function(s) of several complex variables, complex, differentiable function II 282
Function(s) of several complex variables, complex, differential II 282
Function(s) of several complex variables, complexified light cone II 280
Function(s) of several complex variables, distinguished boundary II 279
Function(s) of several complex variables, domain of holomorphy II 287
Function(s) of several complex variables, frame II 279
Function(s) of several complex variables, holomorphic II 283
Function(s) of several complex variables, holomorphic, mapping II 288
Function(s) of several complex variables, holomorphic, relativistic field II 280 II
Function(s) of several complex variables, identity theorem II 285
Function(s) of several complex variables, light cone II 280
Function(s) of several complex variables, light cone, backward II 281
Function(s) of several complex variables, light cone, forward II 281
Function(s) of several complex variables, meromorphic II 288
Function(s) of several complex variables, pluriharmonic II 284
Function(s) of several complex variables, point of indetermination II 288
Function(s) of several complex variables, polycylinder II 278
Function(s) of several complex variables, polydisc II 278
Function(s) of several complex variables, polydisc, with vectorial radius II 279
Function(s) of several complex variables, Reinhardt domain II 280
Function(s) of several complex variables, Taylor expansion II 285
Function(s) of several complex variables, tube domain II 280
Function(s) of several complex variables, uniqueness theorem II 285
Function(s) of two or more variables I 402 ff
Function(s) of two or more variables, extremes I 438 ff
Function(s) of two or more variables, important formulae I 446 ff
Function(s) of two or more variables, introduction of new variables I 432 ff
Function(s) of type B I 574 I
Function(s) with compact support II 339
Function(s), abstract II 364 see
Function(s), algebraic I 364
Function(s), analytic II 276 II
Function(s), approximation I 398
Function(s), bei x, ber x I 704
Function(s), bounded I 366
Function(s), composite I 361 I
Function(s), composite, differentiation of I 382 I
Function(s), concave I 391
Function(s), continuity of I 366 I
Function(s), continuous, on curve I 576
Function(s), continuous, on surface I 576
Function(s), continuously extensible I 405
Function(s), convex I 391
Function(s), decomposition of I 362
Function(s), decreasing I 390
Function(s), dependence of I 420 ff
Function(s), derivatives of I 377 ff
Function(s), differentiable I 378 I
Function(s), domain of definition of I 359 I
Function(s), elementary I 364
Function(s), equal almost everywhere I 560 II
Function(s), equicontinuous I 639
Function(s), equivalent I 664
Function(s), erf x, erfc x I 551
Function(s), even I 366
Function(s), exponential I 365
Function(s), graphical representation of I 394
Function(s), Green II 93 II
Function(s), harmonic II 175
Function(s), higher transcendental I 365
Function(s), holomorfic II 247
Function(s), homogeneous I 416
Function(s), homogeneous, Euler theorem I 416
Function(s), hyperbolic I 90 ff
Function(s), implicit I 423 I
Function(s), important formulae I 400 ff I
Function(s), increasing I 390
Function(s), inverse I 362
Function(s), inverse, hyperbolic I 92 ff
Function(s), inverse, trigonometric I 86
Function(s), investigation of I 393 ff
Function(s), kei x, ker x I 705
Function(s), Lebesgue, integrable I 562
Function(s), Lebesgue, measurable I 561
Function(s), limits of I 371 ff
Function(s), limits of, computation by l'Hospital rule I 388 ff
Function(s), linear combination of I 422
Function(s), linearly dependent, independent I 422
Function(s), local dependency of I 422
Function(s), mean-value theorem I 414 ff
Function(s), measurable I 561
Function(s), meromorphic II 267 II
Function(s), monotonic I 391
Function(s), new variables, introduction and transformations I 432 ff
Function(s), normed (normalized) I 670
Function(s), normed (normalized), with weight function I 673
Function(s), odd I 366
Function(s), piecewise, continuous II 75
Function(s), piecewise, smooth I 405 II
Function(s), points of inflection I 391
Function(s), rational I 364
Function(s), real I 359
Function(s), regular II 247
Function(s), relative maximum and minimum of I 392 I
Function(s), smooth I 379
Function(s), special, of mathematical physics I 713
Function(s), square integrable I 565 I II
Function(s), stationary pouts of I 393
Function(s), transcendental I 364 ff
Function(s), uniformly bounded I 638
Function(s), vanishing at infinity II 175
Functional(s), analysis II 319 ff
Functional(s), coercive II 370
Functional(s), complex II 345
Functional(s), convex II 370
Functional(s), convex, strictly II 370
Functional(s), determinant I 418
Functional(s), extension of II 349
Functional(s), extremum of II 377
Functional(s), extremum of, strong II 377
Functional(s), extremum of, weak II 377
Functional(s), maximum and minimum along curve II 374 II
Functional(s), of energy II 204 II II II
Functional(s), quadratic II 354 II
Functional(s), real II 345
Functional(s), variation of II 379
Fundamental equation II 70
Fundamental matrix II 103 II
Fundamental sequence II 327
Fundamental solution of Laplace and heat conduction equatios II 182 II II
Fundamental system II 53 II
Fundamental system, standard II 55
g.l.b. (greatest lower bound) I 5
Galerkin method II 427 II
Galerkin method, semidiscrete II 464
Gamma function I 546
Gamma function, graph and table I 548
Gateaux, derivative II 372
Gateaux, differential II 367 II
Gateaux, differential, second II 368
Gauss — Legendre quadrature formula I 556
Gauss — Markov theorem II 770
Gauss — Newton method II 780
Gauss — Ostrogradski theorem I 613
Gauss — Seidel method II 618
Gauss(ian), curvature on surface I 330
Gauss(ian), differential equation I 710 II II
Gauss(ian), elimination II 596
Gauss(ian), function I 550
Gauss(ian), fundamental equation for surfaces I 333
Gauss(ian), hypergeometric equation I 710 II
Gauss(ian), integral I 542
Gauss(ian), interpolation formula II 681
Gauss(ian), quadrature formula I 555
Gauss(ian), theorem I 613
Gauss(ian), theorem egregium I 333
Gauss(ian), theorem, in vector notation I 240 I
General Hermite element, one-dimensional II 433
General integral of differential equations II 9 II II
General Lagrange element, one-dimensional II 433
General Lagrange element, two-dimensional II 435
General one-step method II 489
General one-step method, asymptotic error estimate II 490 II
General one-step method, consistent II 489
General one-step method, convergence of II 489
General one-step method, error bound of II 489
General one-step method, local error of II 489
General one-step method, order of II 489
General one-step method, regular II 489
General power I 13 II
General solution of differential equations II 9 II II
Generalized derivatives II 339
Generalized Glairaut equation II 163
Generalized polar coordinates I 588
Generalized solution II 194 II II II
Generalized spherical coordinates I 593
Generating, curve I 127
Generating, function, for Bessel functions I 694
Generating, function, for Legendre polynomials I 707
Generating, lines I 221
Generators I 221
Geodesic curvature I 334
Geometric mean I 9
Geometric sequence I 16
Geometry, analytic I 167 ff
Geometry, analytic, solid I 195 ff
Geometry, differential I 260 ff
Gershgorin, disc II 629
Gershgorin, theorem II 629
Givens method II 640
Glivenko theorem II 745
Gomory algorithm II 863
Goodness of fit tests II 760
Gradient of scalar field I 232
Gradient of straight line I 170
Gradient, curves on surface I 335
Gradient, methods in linear programming II 863
Graeffe method II 654
Gragg method II 514
Gram, determinant I 423
Gram, matrix II 422 II
Gravitational field, equation for particle moving in II 146
Greatest lower bound (g.l.b.) I 5
Green formula regarding symmetric problems II 83
Green function II 93 II
Green function for special regions II 183 II
Green function in conformal mapping II 303
Green function, construction II 94
Green identities I 615 I
Green resolvent II 97
Green theorem I 605
grid II 430 II II see
Group(s), Abelian I 47
Group(s), commutative I 47
Group(s), continuous I 713
Group(s), definition I 47
Group(s), representation and special functions I 713
Group(s), topologic I 713
GROUPING II 742 ff
Growth, curves I 162 ff
Growth, law of I 162
Growth, Robertson law of I 164
Guldin rules I 633
Haar condition II 670
Hahn — Banach theorem II 349
Half-angle formulae for trigonometric functions I 74
Half-line, directed I 174
Hamilton, differential equations II 407
Hamilton, function II 407
Реклама