Авторизация
Поиск по указателям
Rektorys K. — Survey of Applicable Mathematics.Volume 2.
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Survey of Applicable Mathematics.Volume 2.
Автор: Rektorys K.
Аннотация: This major two-volume handbook is an extensively revised, updated second edition of the highly praised Survey of Applicable Mathematics, first published in English in 1969.
The thirty-seven chapters cover all the important mathematical fields of use in applications: algebra, geometry, differential and integral calculus, infinite series, orthogonal systems of functions, Fourier series, special functions, ordinary differential equations, partial differential equations, integral equations, functions of one and several complex variables, conformal mapping, integral transforms, functional analysis, numerical methods in algebra and in algebra and in differential boundary value problems, probability, statistics, stochastic processes, calculus of variations, and linear programming. All proofs have been omitted. However, theorems are carefully formulated, and where considered useful, are commented with explanatory remarks. Many practical examples are given by way of illustration. Each of the two volumes contains an extensive bibliography and a comprehensive index.
Together these two volumes represent a survey library of mathematics which is applicable in many fields of science, engineering, economics, etc.
For researchers, students and teachers of mathematics and its applications.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: 2nd
Год издания: 1994
Количество страниц: 978
Добавлена в каталог: 30.08.2014
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Theorem(s) on Laplace and Fourier transforms II 575 ff
Theorem(s) on maximum for harmonic functions II 177
Theorem(s) on maximum for heat equation II 200
Theorem(s) on minimum of functional of energy II 354 II
Theorem(s) on removable singularity II 181 II
Theorem(s), "edge of the wedge" (functions of several complex variables) II 286
Theorem(s), "Kugelsatz" (functions of several complex variables) II 286
Theorem(s), Abel I 647 II
Theorem(s), Arzela — Ascoli I 639 II
Theorem(s), Banach, on continuous extension, of functional II 349
Theorem(s), Banach, on continuous extension, of operator II 349
Theorem(s), Banach, on contraction mapping II 345
Theorem(s), Banach, on fixed point II 345
Theorem(s), Banach, on inverse operator II 349
Theorem(s), Bayes II 693
Theorem(s), Bernoulli II 731
Theorem(s), binomial I 19 I
Theorem(s), Bolzano — Weierstrass I 340
Theorem(s), Budan — Fourier II 651
Theorem(s), Cauchy I 349
Theorem(s), Cauchy (complex variable) II 252 II II
Theorem(s), Cauchy — Kovalewski II 151
Theorem(s), central limit II 733
Theorem(s), Chebyshev II 669
Theorem(s), comparison II 47 II
Theorem(s), cosine I 79 I
Theorem(s), Courant II 86
Theorem(s), De Moivre I 11
Theorem(s), Descartes II 650
Theorem(s), embedding II 343 II
Theorem(s), Euler I 329 I
Theorem(s), expansion II 90
Theorem(s), Floquet II 49
Theorem(s), Fredholm II 225
Theorem(s), Frobenius I 33
Theorem(s), fundamental of algebra I 21
Theorem(s), Gauss I 240 I I I
Theorem(s), Gauss — Markov II 770
Theorem(s), Glivenko II 745
Theorem(s), Green I 240 I I
Theorem(s), Hahn — Banach II 340
Theorem(s), Harnack (first and second) II 180
Theorem(s), Hilbert — Schmidt II 233
Theorem(s), Hurwitz II 114
Theorem(s), identity (functions of complex variable) II 275 II
Theorem(s), immersion II 343 II
Theorem(s), implicit functions I 423 I
Theorem(s), integral, Cauchy II 252 II
Theorem(s), Jackson II 672
Theorem(s), Khintchine II 732
Theorem(s), Kneser II 48
Theorem(s), Kolmogorov II 732
Theorem(s), Kovalewski II 151
Theorem(s), large numbers II 731 ff
Theorem(s), Lax — Milgram II 200
Theorem(s), Levy — Lindeberg II 733
Theorem(s), Liapunov II 733
Theorem(s), Liouville II 181 II
Theorem(s), Markov II 732
Theorem(s), mean value I 387 I
Theorem(s), mean value (for harmonic functions) II 180 II
Theorem(s), Moivre — Laplace II 733
Theorem(s), residue II 270
Theorem(s), Riemann (on conformal mapping) II 293
Theorem(s), Riemann — Lebesgue I 688
Theorem(s), Riemann — Schwarz reflection principle II 301
Theorem(s), Riezs — Fischer II 352
Theorem(s), Rolle I 387
Theorem(s), Schwarz — Christoffel II 302
Theorem(s), sine I 79 I
Theorem(s), Spaethe II 48
Theorem(s), Stokes I 614 I
Theorem(s), Sturm II 47 II
Theorem(s), tangent I 79
Theorem(s), Taylor I 396 I
Theorem(s), Valle — Poussin II 669
Theorem(s), Weierstrass, approximation by polynomials I 370 II II
Theorem(s), Weierstrass, complex variable II 261
Tillot inequality II 649
Time, series II 797
Time, service and waiting II 806
Time, to failure (lifetime) II 786
Time, to failure (lifetime), mean II 786
Toeplitz matrix II 611
Topologic group I 713
Torsal lines I 321
Torus I 111 I II II
Total differential I 409
Total discretization enor II 483
Total sum of squares II 770 II
Total system of events II 689
Trace of function from Sobolev space II 341
Trace of matrix I 53
Tractrix I 147
Traffic intensity II 807
Trajectory, trajectories of stochastic process II 797
Trajectory, trajectories, orthogonal and isogonal to solutions of differential equations II 30
Transcendent curve I 203
Transcendental branch point II 274
Transcendental functions I 304 I
Transcendental real numbers I 5
Transfer of boundary conditions II 520
Transfer, function of filter II 821
Transformation(s) of differential expressions into polar, cylindrical and spherical coordinates I 434 ff
Transformation(s) of random variables II 727 ff
Transformation(s), affine I 189
Transformation(s), congruent, of cartesian coordinates in plane I 180
Transformation(s), mapping I 40 I
Transformation(s), matrix of coordinate systems I 243
Transformation(s), projective, in plane I 190
transforms see "Integral transforms"
Transient oscillations I 102
Transition, intensity II 801
Transition, matrix II 804
Transition, probability II 799 II
Translation, cartesian coordinate system I 198
Transversality conditions (in variational calculus) II 397
Transverse vibration of rod, differential equation II 142
Trapezoidal rule for definite integrals I 557
Trasportation problem II 828
Trial function II 82
Triangle(s), area of I 169
Triangle(s), centroid of I 200
Triangle(s), formulae for geometric elements of I 95 ff
Triangle(s), general (scalene) I 78
Triangle(s), general (scalene), formulae for determining I 79 ff
Triangle(s), general (scalene), fundamental and further relations I 79 ff
Triangle(s), general (scalene), solution I 80 ff
Triangle(s), geometrical formulae I 95 ff
Triangle(s), inequality I 8 I I
Triangle(s), inequality, in metric and normed space II 331
Triangle(s), spherical I 82
Triangular elements see "Finite elements"
Triangular nets (finite difference method) II 550
Triangulation II 430
Trigonometric equations I 77
Trigonometric Fourier series I 678 ff
Trigonometric functions, addition formulae I 74
Trigonometric functions, behaviour of I 71
Trigonometric functions, definitions of I 70
Trigonometric functions, difference of I 76
Trigonometric functions, expansion into series I 655
Trigonometric functions, half-angle formulae I 74
Trigonometric functions, higher powers of I 76
Trigonometric functions, inverse I 86 ff
Trigonometric functions, multiple-angle formulae I 74
Trigonometric functions, of same angle, relations among I 71 ff
Trigonometric functions, powers of I 76
Trigonometric functions, product of I 76
Trigonometric functions, relations between I 71
Trigonometric functions, signs in individual quadrants I 72
Trigonometric functions, sum of I 76
Trigonometric functions, values for some special angles I 73
Trigonometric interpolation II 683
Trigonometry, plane I 78 ff
Trigonometry, spherical I 82 ff
Trilinear hexagonal three-dimensional element II 442
Triple, integrals I 589 ff
Triple, integrals, improper I 594 ff
Triple, integrals, method of substitution for I 592
Triple, scalar product of three vectors I 230
Trochoid I 127
Truncation error II 483
Tube, domain II 280
Tube, volume and moment of inertia I 108
Twisted curve I 263
Two or more variables, functions of I 402 ff
Two or more variables, functions of, extremes I 438 ff
Two or more variables, functions of, introduction of new variables, transformations I 432 ff
Two or more variables, functions of, survey of important formulae I 446
Two-sided estimates in eigenvalue problems II 87
Ultrahyperbolic equation II 173
Umbilic, umbilical point I 330
Undamped oscillations, forced, curves of I 157
Undamped oscillations, free, curves of I 156
Undamped vibrations, differential equations II 131 II
Undetermined coefficients, Lagrange method I 442
Uniform convergence, sequences with variable terms I 637 II
Uniform convergence, series with variable terms I 642 II
Uniformly bounded sequences I 638
Uniformly convergent integral I 536
Union of sets I 45
Uniqueness theorem (functions of several complex variables) II 285
Unisolvency (finite element method) II 430
Unit tangent vector of curve I 232 I
Unitary space II 333
Univalent (simple) function II 248
Unsubstantially singular point of curve or surface I 261 I
Upper integral of Darboux sums I 512
Valle — Poussin theorem II 669
Vandermonde matrix II 611
Variables, functions of two or more I 402 ff
Variables, separation of, for solving differential equations II 14 II
Variance II 699
Variance of linear transformation of random variables II 728
Variance, sample II 736
Variation of functional II 379
Variation of functional in Du Bois-Reymond form II 380
Variation of functional in Lagrange form II 380
Variation of parameters (constants) II 18 II II II
Variational calculus see "Calculus of variations"
Variational condition II 411
Variational methods II 409 ff
Variational methods in conformal mapping II 305
Vector(s) in algebra I 24
Vector(s) in three-dimensional space I 225
Vector(s) of acceleration, components of I 276
Vector(s) on surface I 252
Vector(s), absolute value I 227
Vector(s), algebra I 24 I
Vector(s), analysis I 231 ff
Vector(s), circulation along closed curve I 238
Vector(s), collinear (parallel) and coplanar I 227
Vector(s), column and row II 704
Vector(s), complex I 24
Vector(s), components (coordinates) of I 24 I
Vector(s), conformably colinear (parallel) I 227
Vector(s), contravariant and covariant I 242 I I
Vector(s), cross product I 229
Vector(s), curvilinear and surface integrals I 238 ff
Vector(s), derivative I 231
Vector(s), direction angles, direction cosines I 228
Vector(s), dot product of I 228
Vector(s), equation of straight line I 205
Vector(s), field I 231
Vector(s), field, divergence and curl I 234 I
Vector(s), field, irrotational I 235
Vector(s), field, potential I 235
Vector(s), field, solenoidal (sourceless) I 234
Vector(s), flux of I 240
Vector(s), function I 231 I
Vector(s), inner product I 228
Vector(s), laws I 24 I
Vector(s), length or magnitude I 168 I
Vector(s), linearly dependent and independent I 24
Vector(s), magnitude, norm, modulus I 227
Vector(s), mixed product I 230
Vector(s), n-component (n-coordinate) I 24
Vector(s), non-coplanar in space I 243
Vector(s), notation for Stokes, Gauss and Green theorems I 230 I
Vector(s), outer product I 220
Vector(s), principal normal (unit) I 232
Vector(s), product I 220
Vector(s), rank of system of I 25
Vector(s), real I 24
Vector(s), scalar product of I 228
Vector(s), space, abstract II 330
Vector(s), space, n-dimensional I 24
Vector(s), triple product I 230
Vector(s), zero (null) I 24 I
Vibrating string equation II 106 II
Vibrations (harmonic, damped, undamped) II 131 II II
Virtual cone I 216
Virtual quadric I 218
Virtual sphere I 200
Void set I 45
Volterra integral equations II 240
Volumes, formulae I 104 ff
Wallis product I 343 I
Wave equation II 101
Weak (Gateaux) differential II 367 II
Weak convergence II 350
Weak solution, of boundary value problems II 200 II II
Weak solution, of evolution problems II 219 II
Weak solution, of parabolic problems II 464
Weak stability II 502
Weber function I 700
Weierstrass M-test I 642 II
Weierstrass theorem I 370 II II II
Weight I 555
Weight, function I 672
Weingarten fundamental equations for surfaces I 333
Well-posed difference scheme II 564
Well-posed problems II 155 II II II
White noise II 798 II II
Wilkinson method II 644
Wronskian determinant II 51
Yule — Walker equations II 813
Z-transformation II 739
Zero of polynomial I 21
Zero, divisors I 48
Zero, function in space I 664 II
Zero, vector I 25 I
Zeta function I 643
Реклама