|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 118 |
|
|
Ïðåäìåòíûé óêàçàòåëü |
"Clamped" systems, many-electron tunneling, interatomic currents and paths 18—21
"Clamped" systems, one-electron long-distance tunneling, charge redistribution 9—12
"Molecular wires", long-distance electron tunneling 3—4
"Molecular wires", magnetic quantum tunneling, single-domain wires, very low temperatures 179—181
"Molecular wires", nonuniform zero Kelvin magnetization reversal, curling mechanisms 129—133
"Molecular wires", Ruthenium-modified copper protein, electron transfer 23—24
phosphorescence, oxalylfluoride, magnetic field influence on excited-state dynamics 84—85
ions, aqueous solution, vibrational energy relaxation 237—247
ions, aqueous solution, vibrational energy relaxation, relaxation mechanism 241—247
ions, aqueous solution, vibrational energy relaxation, relaxation mechanism, bath mode analysis 247
ions, aqueous solution, vibrational energy relaxation, relaxation mechanism, spectral densities 242—243
ions, aqueous solution, vibrational energy relaxation, relaxation mechanism, state densities 241—242
ions, aqueous solution, vibrational energy relaxation, relaxation mechanism, survival probabilities 243—247
ions, aqueous solution, vibrational energy relaxation, relaxation time 238—241
ions, vibrational energy relaxation, theoretical background 196—197
factor values, indirect mechanism (IM) theory 48—49
Ab initio calculations, electron tunneling, protein dynamic effects 39—40
Ab initio calculations, one-electron long-distance tunneling, interatomic currents and paths 11—12
Ab initio calculations, one-electron long-distance tunneling, tunneling matrix element, very large systems 6—8
Ab initio calculations, vibrational energy relaxation Hamiltonians 199—200
Abe, H. 46(8 11—12 17 19) 47(8 19) 48(19) 53(95) 67(19) 77(19) 79(19) 82—84(19) 87(19) 89(8) 93 95
Abragam, A. 55(114) 96 171(165) 190
Abramenkov, A.V. 82(119) 96
Abramson, E. 88(137) 97
Abrikosov, A.A. 13(57) 37(57) 44
Acetylene, singlet-triplet (S-T) conversion, magnet field interaction 73—76
Acetylene, singlet-triplet (S-T) conversion, magnetic field influence on excited-state dynamics 88—90
Achey, R. 176(173) 190
Adam, E. 168(163) 190
Adelman, S.A. 194(15) 202(15) 268
Aharoni, A. 101(2) 120(2) 129(2 67) 130(68—69) 131(67 70 72) 132(2) 185 187
Al-Laham, M.A. 26(66) 44
Al-Saquer, M. 165(157) 190
Alfano, J.C. 201(55) 269
Algebraic solutions, vibrational energy relaxation, one-harmonic-oscillator bath model 253—255
Allen, M.P. 193(10) 12) 194(10) 268
Almeida, L.C.J. 267(110) 270
Altman, R.A. 104(30) 186
Amirov, A. 47(46) 90(46) 91(160 166 172—173) 94 97
Amoretti, G. 163(155—156) 190
Amos, A.T. 15(59) 44
Anderson, P.W. 104(42) 186
Andres, J.L. 26(66) 44
Andrews, D.L. 192(4) 267
Angular dependence, nonuniform zero Kelvin magnetization reversal, curling mechanisms 131-133
Angular dependence, zero Kelvin magnetization reversal, Stoner — Wohlfarth uniform rotation model 126—129
Anisotropic spin-spin interaction, diazine compounds 92—93
Anisotropic spin-spin interaction, oxalylfluoride, magnetic field influence on excited-state dynamics 87—88
Anisotropy, magnetic quantum tunneling, iron molecular clusters 152—154
Anisotropy, nonuniform zero Kelvin magnetization reversal, curling mechanisms 129-133
Anisotropy, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model 136—138
Anisotropy, zero Kelvin magnetization reversal, Stoner — Wohlfarth uniform rotation model 120—126
Annihilation mechanisms, nonuniform zero Kelvin magnetization reversal 133—135
Ansermet, J.-Ph. 104(25 31 35) 111(35) 131(35 74) 132(35 74—76) 146(35 74) 147—148(74) 179(35) 185—187
Anticrossing density, singlet-triplet (S-T) conversion, acetylene magnetic effects 88—90
Antony, J. 9(51) 43
Apsel, S.E. 101(7) 185
Aqueous solution, vibrational energy relaxation, ions 237—247
Aqueous solution, vibrational energy relaxation, ions, relaxation mechanism 241—247
Aqueous solution, vibrational energy relaxation, ions, relaxation mechanism, bath mode analysis 247
Aqueous solution, vibrational energy relaxation, ions, relaxation mechanism, spectral densities 242—243
Aqueous solution, vibrational energy relaxation, ions, relaxation mechanism, state densities 241 —242
Aqueous solution, vibrational energy relaxation, ions, relaxation mechanism, survival probabilities 243—247
Aqueous solution, vibrational energy relaxation, ions, relaxation time 238—241
Arii, T. 103(13) 185
Array architecture, micro-SQUID magnetometry 113
Atomic force microscopy (AFM), micro-SQUID magnetometry fabrication 105
Atomic populations, many-electron tunneling, interatomic currents and paths 18—21
Aubin, S.M.J. 150(122) 176(122) 189
Avoided level crossings, magnetic quantum tunneling, iron molecular clusters 153—154
Awaga, K. 150(124) 176(124) 189
Awschalom, D.D. 104(26) 151(26) 186
Ayala, P.Y. 26(66) 44
Baba, H. 47(15) 90(15) 92(15) 93
Bader, J.S. 194(19) 206(19) 217(19) 225(19) 246(19) 268
Bader, R. 18(65) 44
Baguenard, B. 121(61) 123(61) 187
Baker, J. 26(66) 44
Balabin, I.A. 4—5(24) 8—9(24) 34(24) 36(24) 39(24) 42
Baldwin, D.P. 90(150) 97
Balfour, W.J. 82(123) 96
Ballentine, C.A. 126(63) 187
Ballou, R. 150(115 123) 154(115) 176(123) 189
Bansmann, J. 103(20) 185
Barbara, B. 103(22) 104(22 34—38) 109(36—38) 111(35—38) 113(48) 120(22 59) 121(36—38) 128(65) 131 74) 133(79) 134(22 59 79) 142(36—38 59) 144(36—37) 146(35 74) 147(59 74 79 102) 148(59 74) 149(108) 150(115) 154(115) 176(169) 177(108) 179(22 35) 180(36—37) 185—190
Barbara, P.J. 201(55) 269
Bardotti, L. 121(60) 187
Bardou, N. 103(17) 185
Barnes, S.E. 163(151) 190
Baronavski, A.P. 82(126) 96
Barra, A.L. 150(112) 151(110) 152(110 112) 163(110 112) 188
Bartenlian, B. 103(17) 185
Bartsch, W. 133(82) 187
Bausschlisher, C.W. 90(148) 97
Bazhin, N.M. 46(5 7) 47(5 33) 93—94
Bean, C.P. 135(84—85) 141(84—85) 187—188
Beck, S.M. 82(120) 96
Benjamin, I. 201—202(53) 269
Benoit, A. 103(22) 104(22 34—38) 105—106(43—44) 109(36—38) 111(35—38) 114(43—44 51) 120(22 59) 121(36—38) 128(65) 131—132(35 74) 133(79) 134(22 59 79) 142(36—38 59) 144(36—37) 146(35 74) 147(59 74 79) 148(59 74) 179(22 35) 180(36—37) 185—187
Beratan — Onuchic (BO) model, tunneling currents, long-distance electron tunneling 5
Beratan, D.N. 3(15) 4(22—423) 5(22—523) 7(23) 8(44) 9(22—923) 11(23 44) 36(23) 39(80) 42—44
Berkowitz, A.E. 147(103 105) 188
Berne, B.J. 194(16 19—20) 202(16) 206(19—20) 217(19) 225(19) 246(19) 267(109) 268 270
Berry, R.S. 49(56) 51(56) 94
Bertram, H.N. 142(101) 188
Bertrand, R. 2(1) 41
Bertsch, G.F. 101(5) 185
Bessel function, vibrational energy relaxation, quantum probability fluctuation, density matrix moments 251—252
Bettac, A. 103(20) 185
Bhushan, M. 104(41) 161(41) 186
Bian, X.R. 104(30) 186
Billas, I.M. 101(6) 185
bin Hussein, M.Z. 82(127) 96
Binder, K. 193(13) 268
Binkely, J.S. 26(66) 44
Biskup, N. 176(173) 188 190
Bixon, M. 2—3(10) 41 49(55) 51(55) 94
Bleaney, B. 171(165) 190
Blind mode techniques, micro-SQUID magnetometry, three-dimensional switching measurements 111—113
Bloch — Redfield theory, vibrational energy relaxation, Fermi's golden rule, force autocorrelation function 205—206
Bloomfield, L.A. 101(7) 185
Blum, K. 55(113) 96
Boerner, E.D. 142(101) 188
Bogdanchikov 47—49(39) 62(39) 77(39) 83—84(39) 86—88(39) 94
Bogge, H. 176(169) 190
Bohmi(n)an trajectories, tunneling flow vortices 31—32
Bohminan trajectories, one-electron longdistance tunneling, interatomic currents and paths 10—12
Boivin, D. 104(36) 109(36) 111(36) 121(36) 142(36) 144(36) 180(36) 186
Bokecheva, L. 150(120) 154(120) 173(120 167) 189—190
Bom magneton, singlet-triplet (S-T) conversion, Zeeman interaction operator 62—63
Bonet Orozco, E. 104(36—38) 109(36—38) 111(36—38) 121(36—38) 128(65) 142(36—38) 144(36—37) 180(36—37) 186—187
Born — Oppenheimer approximation, singlet- triplet (S-T) conversion mechanism 54—56
Bouchiat, V. 105(46) 114(46) 186
Brand, J.C.D. 54—55(97 102) 95—96
Brandt, A. 39(76—77) 44
Braun, H.-B. 132(77) 146(77) 187
Brechin, E.K. 150(124) 176(124) 189
Brillouin function, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model 135-136
Broida, H.P. 49(62) 51(62) 95
Brooks, J.S. 150(119) 154(119) 176(173) 189—190
Broto, J.M. 147(102) 188
Brown, J.K. 201(52) 269
Brown, S.C. 82(124) 96
Brown, W.F. 135—136(86—88) 180(86—88) 188
Bruch, L.W. 26(71) 44
Bruehl, M. 205(71) 269
Brunei, L.-C. 150(124) 176(124) 189
Brunner, T. 104(41) 161(41) 186
Bryant, G.W. 90(159) 97
Bryant, P. 133(81) 187
| Buchner, M. 198(45) 269
Bunker, P.R. 54—55(105) 96
Buntine, M.A. 90(150) 97
Butler, S. 46(2) 93
Cabral, C. 104(41) 161(41) 186
Caciuffo, R. 163(155—156) 190
Caldeira, A.O. 207(89) 211(89) 218(89) 220(89) 225(89) 270
Caner, M. 49(67) 51(67) 95
Caneschi, A. 150(111 121) 151—152(109) 160(144) 163(155—156) 168(144) 170(144) 172(166) 176(121 170) 188—190
Casassa, M.R. 192(2) 267
Casimiro, D.R. 2—3(7) 26(7) 33(7) 41
Cavanagh, R.R. 192(2) 267
Cave, R. 11(53—54) 33(75) 36(78) 43—44
Cemicchiaro, G. 114(51) 120(59) 134(59) 142(59) 147—148(59) 186—187
Centroid molecular dynamics, ions in aqueous solution, relaxation times 238—241
Centroid molecular dynamics, vibrational energy relaxation, path integral theory 226—227
Centroid molecular dynamics, vibrational energy relaxation, theoretical background 194—195
Cerjan, C.J. 133(83) 187
Chakravaty, S. 149(107) 188
Challacombe, M. 26(66) 44
Chance, B. 4(18) 42
Chandler, D.W. 90(150) 97
Chandrashekhar, J. 239(102) 270
Chandrashekhar, V. 104(41) 161(41) 186
Chang, C.-R. 126(64) 187
Chang, I. 2—4(6) 26(6) 33(6) 41
Chang, T. 103(18) 185
Chapelier, C. 105—106(43—44) 114(43—44) 186
Chapman, J.N. 103(15) 185
Chappert, C. 103(17) 185
Charge redistribution, one-electron long-distance tunneling, interatomic currents and paths 9—12
Charge transfer, long-distance electron tunneling 3
Chatelaink, A. 101(6) 185
Cheeseman, J.R. 26(66) 44
Chen, W. 26(66) 44
Chen, Xiaoxi 2—4(2) 40(2) 41
Cherayil, B.J. 203(64) 269
Chernov, L.A. 255(104) 270
Chernyak, V. 3—4(14) 42
Cheung, A.S.-C. 54—55(98) 95
Chiorescu, I. 151(126) 173(126) 176(169) 189—190
Chock, D.P. 49(57) 51(57) 94
Christou, G. 150(122 124) 176(122 124) 189
Chu, J.G. 103(18) 185
Chuang, D.S. 126(63) 187
Chudnovsky, E.M. 173(168) 177(176) 190
Chung, M. 8—9(49) 11(49) 24(49) 43
Ciccotti, G. 193(11) 268
Cioslowski, J. 26(66) 44
Cis configuration, oxalylfluoride, magnetic field influence on excited-state dynamics 82
Clark, J.H. 88(131) 96
Clarke, J. 104(40) 186
Clarke, R. 126(62) 187
Classical limit, vibrational energy relaxation, one-harmonic-oscillator bath model 255—257
Cleland, A.N. 104(40) 186
Cline, R.E. 218(94) 270
Cobalt nanoparticles, nonuniform zero Kelvin magnetization reversal, nucleation and annihilation of domain walls 133—135
Cobalt nanoparticles, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model 144—146
Cobalt nanoparticles, zero Kelvin magnetization reversal, Stoner — Wohlfarth uniform rotation model 121—126
Coffey, W.T. 136(89—90) 137(89—91) 138(94) 188
Cohen, B.J. 49(72) 51(72) 95
Coker, D.F. 195(34 36) 232(34 36) 268
Cold mode techniques, micro-SQUID magnetometry, switching measurements 109—111
Colin, R. 88(135) 96
Colussi, A.J. 90(158) 97
Combet, J. 163(156) 190
Con, J.B. 88(129) 96
Conduction bands, long-distance electron tunneling 4
Conjugated gradient technique, one-electron long-distance tunneling, tunneling matrix element, very large systems 7-8
Copper proteins, electron transfer, Ruthenium-modified copper protein 21—24
Coppinger, F. 103(23) 179(23) 185
Coriolis interaction, oxalylfluoride, magnetic field influence on excited-state dynamics 88
Coriolis interaction, singlet-triplet (S-T) coupling 56—57
Coriolis interaction, singlet-triplet (S-T) coupling, first-order perturbation matrix elements 59—61
Coriolis interaction, singlet-triplet (S-T) coupling, pyrazine magnetic effects 91—92
Cornette, A. 104(29) 186
Cornia, A. 150(121) 160(144) 168(144) 170(144) 172(166) 176(121 170) 189—190
Correlation effects, electron tunneling 40—41
Coulombic interaction, vibrational energy relaxation influence functional theory 208—209
Coulombic interaction, vibrational energy relaxation, classical molecular dynamics 200—201
Coulombic interaction, vibrational energy relaxation, Hamiltonians 199—200
Cristoph, A.C. 26(70) 44
Critical current measurements, micro-SQUID magnetometry, magnetization reversal in nanoparticles and clusters 105-109
Crossover temperature, magnetic quantum tunneling, single-domain nanoparticles 177—178
Crothers, D.S.F. 136(89—90) 137(89—91) 188
Cruz, A.R. 89—90(143) 97
Cubic anisotropy, zero Kelvin magnetization reversal, Stoner — Wohlfarth uniform rotation model 126—129
Cuccoli, A. 168(163) 190
Cui, Q. 90(154—155) 97
Curl, R.F. 55(110) 96
Curling, nonuniform zero Kelvin magnetization reversal 129—133
Current density operator, many-electron tunneling 12—13
Current density operator, many-electron tunneling, spatial distribution 13—15
Cushing, J. 10(52) 31(52) 43
Daizadeh, I. 5(30—531) 6(38) 8(38 45 48—49) 9(38 49) 10(30—31) 11(49) 24(49) 26(31) 31(31 45) 34(45) 39—40(45) 42—43
Dalai, N.S. 150(119) 154(119) 176(173) 189—190
Damping mechanisms, magnetic quantum tunneling, single-domain nanoparticles 178
Dang, L.X. 267(108) 270
Dashen, R. 255(106) 263(106) 270
David, E.F. 203(66) 269
Davis, W. 3(16) 42
Dayem bridges, micro-SQUID magnetometry configuration 104—105
Dayem, A.H. 104(42) 186
de Heer, W.A. 101(6) 185
Dearborn, E.F. 49(71) 51(71) 95
Debrunner, P. 150(112) 152(112) 163(112) 188
DeFrees, D.J. 26(66) 44
Del Barco, E. 176(173) 190
Delfs, C. 152(127) 189
Demagnetization factors, nonuniform zero Kelvin magnetization reversal, curling mechanisms 129—133
Demoncy, N. 104(36) 109(36) 111(36) 121(36) 142(36) 144(36) 180(36) 186
Deng, J. 101(7) 185
Dennison, C. 2—3(4) 7(4) 33(4) 41
Density functional theory (DFT), tunneling current calculations 38—39
Density matrix moments, vibrational energy relaxation, quantum probability fluctuation 248—252
Density of states, ions, aqueous solution 241—242
Deshmukh, M.M. 104(33) 186
DeVault, D. 2(1) 4(18) 41—42
Devoret, M.H. 104(40) 186
Di Bilio, A. 2—3(4) 7(4) 33(4) 41
Di Lauro, C. 54—55(101—102) 96
Diazines, magnetic field influence on excited-state dynamics 90—93
Diazines, magnetic field influence on excited-state dynamics, anisotropic spin-spin constants 92—93
Diazines, magnetic field influence on excited-state dynamics, pyrazine 90—92
Diazines, magnetic field influence on excited-state dynamics, pyrimidine 92
Diazines, magnetic field influence on excited-state dynamics, s-triazine 92
Dietz, W. 49(79) 51(79) 95
Dilley, N.R. 150(122) 176(122) 189
Dipolar distribution, environmental decoherence effects, molecular clusters 166—168
Dirac, P.A.M. 30(72) 44
Direct mechanism (DM) theory, defined 46—49
Direct mechanism (DM) theory, singlet-triplet (S-T) conversion mechanism 52—53
Dissipation kernel, vibrational energy relaxation, influence functional theory 225—226
Distribution function, quantum probability fluctuation, vibrational energy relaxation 261—263
Distribution function, vibrational energy relaxation, quantum probability fluctuation 261—263
DiVincenzo, D.P. 161(145) 189
Dobrovitski, V.V. 165(157) 176(171) 190
Domain walls, magnetic quantum tunneling, single-domain nanoparticles and wires, very low temperatures 180—181
Domain walls, magnetization reversal and 101—102
Domain walls, nonuniform zero Kelvin magnetization reversal, nucleation and annihilation 133—135
Domain walls, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model 146—147
Domain walls, zero Kelvin magnetization reversal, properties of 114—115
Donor-bridge-acceptor systems, one-electron long-distance tunneling, protein pruning techniques 8—9
Donor-bridge-acceptor systems, one-electron long-distance tunneling, tunneling matrix element, very large systems 6—8
Donor-bridge-acceptor systems, Ruthenium-modified copper protein, His/Met residue tunneling transition 25—27
Dorantes-Devila, J. 101(4) 185
Dormann, J.L. 103(8) 136(89—90) 137(89—91) 138(8) 141(8) 185 188
Dorsey, A.T. 149(107) 188
Doudin, B. 104(25 35) 111(35) 131(35 74) 132(35 74—76) 146(35 74) 147—148(74) 179(35) 185—187
Dr able, K.E. 91(161 175) 97—98
|
|
|
Ðåêëàìà |
|
|
|