Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 118
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 118



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in Chemical Physics. Volume 118

Àâòîðû: Prigogine I. (ed.), Rice S.A. (ed.)

Àííîòàöèÿ:

This is the only series of volumes available that represents the cutting edge of research relative to advances in chemical physics. Provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. Continues to report recent advances with significant, up-to-date chapters. Contributing authors are internationally recognized researchers.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 304

Äîáàâëåíà â êàòàëîã: 08.12.2013

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
"Clamped" systems, many-electron tunneling, interatomic currents and paths      18—21
"Clamped" systems, one-electron long-distance tunneling, charge redistribution      9—12
"Molecular wires", long-distance electron tunneling      3—4
"Molecular wires", magnetic quantum tunneling, single-domain wires, very low temperatures      179—181
"Molecular wires", nonuniform zero Kelvin magnetization reversal, curling mechanisms      129—133
"Molecular wires", Ruthenium-modified copper protein, electron transfer      23—24
$(COF)_{2}$ phosphorescence, oxalylfluoride, magnetic field influence on excited-state dynamics      84—85
$CN^{-}$ ions, aqueous solution, vibrational energy relaxation      237—247
$CN^{-}$ ions, aqueous solution, vibrational energy relaxation, relaxation mechanism      241—247
$CN^{-}$ ions, aqueous solution, vibrational energy relaxation, relaxation mechanism, bath mode analysis      247
$CN^{-}$ ions, aqueous solution, vibrational energy relaxation, relaxation mechanism, spectral densities      242—243
$CN^{-}$ ions, aqueous solution, vibrational energy relaxation, relaxation mechanism, state densities      241—242
$CN^{-}$ ions, aqueous solution, vibrational energy relaxation, relaxation mechanism, survival probabilities      243—247
$CN^{-}$ ions, aqueous solution, vibrational energy relaxation, relaxation time      238—241
$CN^{-}$ ions, vibrational energy relaxation, theoretical background      196—197
$f_{IM}$ factor values, indirect mechanism (IM) theory      48—49
Ab initio calculations, electron tunneling, protein dynamic effects      39—40
Ab initio calculations, one-electron long-distance tunneling, interatomic currents and paths      11—12
Ab initio calculations, one-electron long-distance tunneling, tunneling matrix element, very large systems      6—8
Ab initio calculations, vibrational energy relaxation Hamiltonians      199—200
Abe, H.      46(8 11—12 17 19) 47(8 19) 48(19) 53(95) 67(19) 77(19) 79(19) 82—84(19) 87(19) 89(8) 93 95
Abragam, A.      55(114) 96 171(165) 190
Abramenkov, A.V.      82(119) 96
Abramson, E.      88(137) 97
Abrikosov, A.A.      13(57) 37(57) 44
Acetylene, singlet-triplet (S-T) conversion, magnet field interaction      73—76
Acetylene, singlet-triplet (S-T) conversion, magnetic field influence on excited-state dynamics      88—90
Achey, R.      176(173) 190
Adam, E.      168(163) 190
Adelman, S.A.      194(15) 202(15) 268
Aharoni, A.      101(2) 120(2) 129(2 67) 130(68—69) 131(67 70 72) 132(2) 185 187
Al-Laham, M.A.      26(66) 44
Al-Saquer, M.      165(157) 190
Alfano, J.C.      201(55) 269
Algebraic solutions, vibrational energy relaxation, one-harmonic-oscillator bath model      253—255
Allen, M.P.      193(10) 12) 194(10) 268
Almeida, L.C.J.      267(110) 270
Altman, R.A.      104(30) 186
Amirov, A.      47(46) 90(46) 91(160 166 172—173) 94 97
Amoretti, G.      163(155—156) 190
Amos, A.T.      15(59) 44
Anderson, P.W.      104(42) 186
Andres, J.L.      26(66) 44
Andrews, D.L.      192(4) 267
Angular dependence, nonuniform zero Kelvin magnetization reversal, curling mechanisms      131-133
Angular dependence, zero Kelvin magnetization reversal, Stoner — Wohlfarth uniform rotation model      126—129
Anisotropic spin-spin interaction, diazine compounds      92—93
Anisotropic spin-spin interaction, oxalylfluoride, magnetic field influence on excited-state dynamics      87—88
Anisotropy, magnetic quantum tunneling, iron $(Fe_{8})$ molecular clusters      152—154
Anisotropy, nonuniform zero Kelvin magnetization reversal, curling mechanisms      129-133
Anisotropy, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model      136—138
Anisotropy, zero Kelvin magnetization reversal, Stoner — Wohlfarth uniform rotation model      120—126
Annihilation mechanisms, nonuniform zero Kelvin magnetization reversal      133—135
Ansermet, J.-Ph.      104(25 31 35) 111(35) 131(35 74) 132(35 74—76) 146(35 74) 147—148(74) 179(35) 185—187
Anticrossing density, singlet-triplet (S-T) conversion, acetylene magnetic effects      88—90
Antony, J.      9(51) 43
Apsel, S.E.      101(7) 185
Aqueous solution, vibrational energy relaxation, $CN^{-}$ ions      237—247
Aqueous solution, vibrational energy relaxation, $CN^{-}$ ions, relaxation mechanism      241—247
Aqueous solution, vibrational energy relaxation, $CN^{-}$ ions, relaxation mechanism, bath mode analysis      247
Aqueous solution, vibrational energy relaxation, $CN^{-}$ ions, relaxation mechanism, spectral densities      242—243
Aqueous solution, vibrational energy relaxation, $CN^{-}$ ions, relaxation mechanism, state densities      241 —242
Aqueous solution, vibrational energy relaxation, $CN^{-}$ ions, relaxation mechanism, survival probabilities      243—247
Aqueous solution, vibrational energy relaxation, $CN^{-}$ ions, relaxation time      238—241
Arii, T.      103(13) 185
Array architecture, micro-SQUID magnetometry      113
Atomic force microscopy (AFM), micro-SQUID magnetometry fabrication      105
Atomic populations, many-electron tunneling, interatomic currents and paths      18—21
Aubin, S.M.J.      150(122) 176(122) 189
Avoided level crossings, magnetic quantum tunneling, iron $(Fe_{8})$ molecular clusters      153—154
Awaga, K.      150(124) 176(124) 189
Awschalom, D.D.      104(26) 151(26) 186
Ayala, P.Y.      26(66) 44
Baba, H.      47(15) 90(15) 92(15) 93
Bader, J.S.      194(19) 206(19) 217(19) 225(19) 246(19) 268
Bader, R.      18(65) 44
Baguenard, B.      121(61) 123(61) 187
Baker, J.      26(66) 44
Balabin, I.A.      4—5(24) 8—9(24) 34(24) 36(24) 39(24) 42
Baldwin, D.P.      90(150) 97
Balfour, W.J.      82(123) 96
Ballentine, C.A.      126(63) 187
Ballou, R.      150(115 123) 154(115) 176(123) 189
Bansmann, J.      103(20) 185
Barbara, B.      103(22) 104(22 34—38) 109(36—38) 111(35—38) 113(48) 120(22 59) 121(36—38) 128(65) 131 74) 133(79) 134(22 59 79) 142(36—38 59) 144(36—37) 146(35 74) 147(59 74 79 102) 148(59 74) 149(108) 150(115) 154(115) 176(169) 177(108) 179(22 35) 180(36—37) 185—190
Barbara, P.J.      201(55) 269
Bardotti, L.      121(60) 187
Bardou, N.      103(17) 185
Barnes, S.E.      163(151) 190
Baronavski, A.P.      82(126) 96
Barra, A.L.      150(112) 151(110) 152(110 112) 163(110 112) 188
Bartenlian, B.      103(17) 185
Bartsch, W.      133(82) 187
Bausschlisher, C.W.      90(148) 97
Bazhin, N.M.      46(5 7) 47(5 33) 93—94
Bean, C.P.      135(84—85) 141(84—85) 187—188
Beck, S.M.      82(120) 96
Benjamin, I.      201—202(53) 269
Benoit, A.      103(22) 104(22 34—38) 105—106(43—44) 109(36—38) 111(35—38) 114(43—44 51) 120(22 59) 121(36—38) 128(65) 131—132(35 74) 133(79) 134(22 59 79) 142(36—38 59) 144(36—37) 146(35 74) 147(59 74 79) 148(59 74) 179(22 35) 180(36—37) 185—187
Beratan — Onuchic (BO) model, tunneling currents, long-distance electron tunneling      5
Beratan, D.N.      3(15) 4(22—423) 5(22—523) 7(23) 8(44) 9(22—923) 11(23 44) 36(23) 39(80) 42—44
Berkowitz, A.E.      147(103 105) 188
Berne, B.J.      194(16 19—20) 202(16) 206(19—20) 217(19) 225(19) 246(19) 267(109) 268 270
Berry, R.S.      49(56) 51(56) 94
Bertram, H.N.      142(101) 188
Bertrand, R.      2(1) 41
Bertsch, G.F.      101(5) 185
Bessel function, vibrational energy relaxation, quantum probability fluctuation, density matrix moments      251—252
Bettac, A.      103(20) 185
Bhushan, M.      104(41) 161(41) 186
Bian, X.R.      104(30) 186
Billas, I.M.      101(6) 185
bin Hussein, M.Z.      82(127) 96
Binder, K.      193(13) 268
Binkely, J.S.      26(66) 44
Biskup, N.      176(173) 188 190
Bixon, M.      2—3(10) 41 49(55) 51(55) 94
Bleaney, B.      171(165) 190
Blind mode techniques, micro-SQUID magnetometry, three-dimensional switching measurements      111—113
Bloch — Redfield theory, vibrational energy relaxation, Fermi's golden rule, force autocorrelation function      205—206
Bloomfield, L.A.      101(7) 185
Blum, K.      55(113) 96
Boerner, E.D.      142(101) 188
Bogdanchikov      47—49(39) 62(39) 77(39) 83—84(39) 86—88(39) 94
Bogge, H.      176(169) 190
Bohmi(n)an trajectories, tunneling flow vortices      31—32
Bohminan trajectories, one-electron longdistance tunneling, interatomic currents and paths      10—12
Boivin, D.      104(36) 109(36) 111(36) 121(36) 142(36) 144(36) 180(36) 186
Bokecheva, L.      150(120) 154(120) 173(120 167) 189—190
Bom magneton, singlet-triplet (S-T) conversion, Zeeman interaction operator      62—63
Bonet Orozco, E.      104(36—38) 109(36—38) 111(36—38) 121(36—38) 128(65) 142(36—38) 144(36—37) 180(36—37) 186—187
Born — Oppenheimer approximation, singlet- triplet (S-T) conversion mechanism      54—56
Bouchiat, V.      105(46) 114(46) 186
Brand, J.C.D.      54—55(97 102) 95—96
Brandt, A.      39(76—77) 44
Braun, H.-B.      132(77) 146(77) 187
Brechin, E.K.      150(124) 176(124) 189
Brillouin function, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model      135-136
Broida, H.P.      49(62) 51(62) 95
Brooks, J.S.      150(119) 154(119) 176(173) 189—190
Broto, J.M.      147(102) 188
Brown, J.K.      201(52) 269
Brown, S.C.      82(124) 96
Brown, W.F.      135—136(86—88) 180(86—88) 188
Bruch, L.W.      26(71) 44
Bruehl, M.      205(71) 269
Brunei, L.-C.      150(124) 176(124) 189
Brunner, T.      104(41) 161(41) 186
Bryant, G.W.      90(159) 97
Bryant, P.      133(81) 187
Buchner, M.      198(45) 269
Bunker, P.R.      54—55(105) 96
Buntine, M.A.      90(150) 97
Butler, S.      46(2) 93
Cabral, C.      104(41) 161(41) 186
Caciuffo, R.      163(155—156) 190
Caldeira, A.O.      207(89) 211(89) 218(89) 220(89) 225(89) 270
Caner, M.      49(67) 51(67) 95
Caneschi, A.      150(111 121) 151—152(109) 160(144) 163(155—156) 168(144) 170(144) 172(166) 176(121 170) 188—190
Casassa, M.R.      192(2) 267
Casimiro, D.R.      2—3(7) 26(7) 33(7) 41
Cavanagh, R.R.      192(2) 267
Cave, R.      11(53—54) 33(75) 36(78) 43—44
Cemicchiaro, G.      114(51) 120(59) 134(59) 142(59) 147—148(59) 186—187
Centroid molecular dynamics, $CN^{-}$ ions in aqueous solution, relaxation times      238—241
Centroid molecular dynamics, vibrational energy relaxation, path integral theory      226—227
Centroid molecular dynamics, vibrational energy relaxation, theoretical background      194—195
Cerjan, C.J.      133(83) 187
Chakravaty, S.      149(107) 188
Challacombe, M.      26(66) 44
Chance, B.      4(18) 42
Chandler, D.W.      90(150) 97
Chandrashekhar, J.      239(102) 270
Chandrashekhar, V.      104(41) 161(41) 186
Chang, C.-R.      126(64) 187
Chang, I.      2—4(6) 26(6) 33(6) 41
Chang, T.      103(18) 185
Chapelier, C.      105—106(43—44) 114(43—44) 186
Chapman, J.N.      103(15) 185
Chappert, C.      103(17) 185
Charge redistribution, one-electron long-distance tunneling, interatomic currents and paths      9—12
Charge transfer, long-distance electron tunneling      3
Chatelaink, A.      101(6) 185
Cheeseman, J.R.      26(66) 44
Chen, W.      26(66) 44
Chen, Xiaoxi      2—4(2) 40(2) 41
Cherayil, B.J.      203(64) 269
Chernov, L.A.      255(104) 270
Chernyak, V.      3—4(14) 42
Cheung, A.S.-C.      54—55(98) 95
Chiorescu, I.      151(126) 173(126) 176(169) 189—190
Chock, D.P.      49(57) 51(57) 94
Christou, G.      150(122 124) 176(122 124) 189
Chu, J.G.      103(18) 185
Chuang, D.S.      126(63) 187
Chudnovsky, E.M.      173(168) 177(176) 190
Chung, M.      8—9(49) 11(49) 24(49) 43
Ciccotti, G.      193(11) 268
Cioslowski, J.      26(66) 44
Cis configuration, oxalylfluoride, magnetic field influence on excited-state dynamics      82
Clark, J.H.      88(131) 96
Clarke, J.      104(40) 186
Clarke, R.      126(62) 187
Classical limit, vibrational energy relaxation, one-harmonic-oscillator bath model      255—257
Cleland, A.N.      104(40) 186
Cline, R.E.      218(94) 270
Cobalt nanoparticles, nonuniform zero Kelvin magnetization reversal, nucleation and annihilation of domain walls      133—135
Cobalt nanoparticles, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model      144—146
Cobalt nanoparticles, zero Kelvin magnetization reversal, Stoner — Wohlfarth uniform rotation model      121—126
Coffey, W.T.      136(89—90) 137(89—91) 138(94) 188
Cohen, B.J.      49(72) 51(72) 95
Coker, D.F.      195(34 36) 232(34 36) 268
Cold mode techniques, micro-SQUID magnetometry, switching measurements      109—111
Colin, R.      88(135) 96
Colussi, A.J.      90(158) 97
Combet, J.      163(156) 190
Con, J.B.      88(129) 96
Conduction bands, long-distance electron tunneling      4
Conjugated gradient technique, one-electron long-distance tunneling, tunneling matrix element, very large systems      7-8
Copper proteins, electron transfer, Ruthenium-modified copper protein      21—24
Coppinger, F.      103(23) 179(23) 185
Coriolis interaction, oxalylfluoride, magnetic field influence on excited-state dynamics      88
Coriolis interaction, singlet-triplet (S-T) coupling      56—57
Coriolis interaction, singlet-triplet (S-T) coupling, first-order perturbation matrix elements      59—61
Coriolis interaction, singlet-triplet (S-T) coupling, pyrazine magnetic effects      91—92
Cornette, A.      104(29) 186
Cornia, A.      150(121) 160(144) 168(144) 170(144) 172(166) 176(121 170) 189—190
Correlation effects, electron tunneling      40—41
Coulombic interaction, vibrational energy relaxation influence functional theory      208—209
Coulombic interaction, vibrational energy relaxation, classical molecular dynamics      200—201
Coulombic interaction, vibrational energy relaxation, Hamiltonians      199—200
Cristoph, A.C.      26(70) 44
Critical current measurements, micro-SQUID magnetometry, magnetization reversal in nanoparticles and clusters      105-109
Crossover temperature, magnetic quantum tunneling, single-domain nanoparticles      177—178
Crothers, D.S.F.      136(89—90) 137(89—91) 188
Cruz, A.R.      89—90(143) 97
Cubic anisotropy, zero Kelvin magnetization reversal, Stoner — Wohlfarth uniform rotation model      126—129
Cuccoli, A.      168(163) 190
Cui, Q.      90(154—155) 97
Curl, R.F.      55(110) 96
Curling, nonuniform zero Kelvin magnetization reversal      129—133
Current density operator, many-electron tunneling      12—13
Current density operator, many-electron tunneling, spatial distribution      13—15
Cushing, J.      10(52) 31(52) 43
Daizadeh, I.      5(30—531) 6(38) 8(38 45 48—49) 9(38 49) 10(30—31) 11(49) 24(49) 26(31) 31(31 45) 34(45) 39—40(45) 42—43
Dalai, N.S.      150(119) 154(119) 176(173) 189—190
Damping mechanisms, magnetic quantum tunneling, single-domain nanoparticles      178
Dang, L.X.      267(108) 270
Dashen, R.      255(106) 263(106) 270
David, E.F.      203(66) 269
Davis, W.      3(16) 42
Dayem bridges, micro-SQUID magnetometry configuration      104—105
Dayem, A.H.      104(42) 186
de Heer, W.A.      101(6) 185
Dearborn, E.F.      49(71) 51(71) 95
Debrunner, P.      150(112) 152(112) 163(112) 188
DeFrees, D.J.      26(66) 44
Del Barco, E.      176(173) 190
Delfs, C.      152(127) 189
Demagnetization factors, nonuniform zero Kelvin magnetization reversal, curling mechanisms      129—133
Demoncy, N.      104(36) 109(36) 111(36) 121(36) 142(36) 144(36) 180(36) 186
Deng, J.      101(7) 185
Dennison, C.      2—3(4) 7(4) 33(4) 41
Density functional theory (DFT), tunneling current calculations      38—39
Density matrix moments, vibrational energy relaxation, quantum probability fluctuation      248—252
Density of states, $CN^{-}$ ions, aqueous solution      241—242
Deshmukh, M.M.      104(33) 186
DeVault, D.      2(1) 4(18) 41—42
Devoret, M.H.      104(40) 186
Di Bilio, A.      2—3(4) 7(4) 33(4) 41
Di Lauro, C.      54—55(101—102) 96
Diazines, magnetic field influence on excited-state dynamics      90—93
Diazines, magnetic field influence on excited-state dynamics, anisotropic spin-spin constants      92—93
Diazines, magnetic field influence on excited-state dynamics, pyrazine      90—92
Diazines, magnetic field influence on excited-state dynamics, pyrimidine      92
Diazines, magnetic field influence on excited-state dynamics, s-triazine      92
Dietz, W.      49(79) 51(79) 95
Dilley, N.R.      150(122) 176(122) 189
Dipolar distribution, environmental decoherence effects, molecular clusters      166—168
Dirac, P.A.M.      30(72) 44
Direct mechanism (DM) theory, defined      46—49
Direct mechanism (DM) theory, singlet-triplet (S-T) conversion mechanism      52—53
Dissipation kernel, vibrational energy relaxation, influence functional theory      225—226
Distribution function, quantum probability fluctuation, vibrational energy relaxation      261—263
Distribution function, vibrational energy relaxation, quantum probability fluctuation      261—263
DiVincenzo, D.P.      161(145) 189
Dobrovitski, V.V.      165(157) 176(171) 190
Domain walls, magnetic quantum tunneling, single-domain nanoparticles and wires, very low temperatures      180—181
Domain walls, magnetization reversal and      101—102
Domain walls, nonuniform zero Kelvin magnetization reversal, nucleation and annihilation      133—135
Domain walls, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model      146—147
Domain walls, zero Kelvin magnetization reversal, properties of      114—115
Donor-bridge-acceptor systems, one-electron long-distance tunneling, protein pruning techniques      8—9
Donor-bridge-acceptor systems, one-electron long-distance tunneling, tunneling matrix element, very large systems      6—8
Donor-bridge-acceptor systems, Ruthenium-modified copper protein, His/Met residue tunneling transition      25—27
Dorantes-Devila, J.      101(4) 185
Dormann, J.L.      103(8) 136(89—90) 137(89—91) 138(8) 141(8) 185 188
Dorsey, A.T.      149(107) 188
Doudin, B.      104(25 35) 111(35) 131(35 74) 132(35 74—76) 146(35 74) 147—148(74) 179(35) 185—187
Dr able, K.E.      91(161 175) 97—98
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå