| 
		        
			        |  |  
			        |  |  
					| Àâòîðèçàöèÿ |  
					|  |  
			        |  |  
			        | Ïîèñê ïî óêàçàòåëÿì |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 118 |  
                    |  |  
			        |  |  
                    | Ïðåäìåòíûé óêàçàòåëü |  
                    | | "Clamped" systems, many-electron tunneling, interatomic currents and paths      18—21 "Clamped" systems, one-electron long-distance tunneling, charge redistribution      9—12
 "Molecular wires", long-distance electron tunneling      3—4
 "Molecular wires", magnetic quantum tunneling, single-domain wires, very low temperatures      179—181
 "Molecular wires", nonuniform zero Kelvin magnetization reversal, curling mechanisms      129—133
 "Molecular wires", Ruthenium-modified copper protein, electron transfer      23—24
 
  phosphorescence, oxalylfluoride, magnetic field influence on excited-state dynamics      84—85 
  ions, aqueous solution, vibrational energy relaxation      237—247 
  ions, aqueous solution, vibrational energy relaxation, relaxation mechanism      241—247 
  ions, aqueous solution, vibrational energy relaxation, relaxation mechanism, bath mode analysis      247 
  ions, aqueous solution, vibrational energy relaxation, relaxation mechanism, spectral densities      242—243 
  ions, aqueous solution, vibrational energy relaxation, relaxation mechanism, state densities      241—242 
  ions, aqueous solution, vibrational energy relaxation, relaxation mechanism, survival probabilities      243—247 
  ions, aqueous solution, vibrational energy relaxation, relaxation time      238—241 
  ions, vibrational energy relaxation, theoretical background      196—197 
  factor values, indirect mechanism (IM) theory      48—49 Ab initio calculations, electron tunneling, protein dynamic effects      39—40
 Ab initio calculations, one-electron long-distance tunneling, interatomic currents and paths      11—12
 Ab initio calculations, one-electron long-distance tunneling, tunneling matrix element, very large systems      6—8
 Ab initio calculations, vibrational energy relaxation Hamiltonians      199—200
 Abe, H.      46(8 11—12 17 19) 47(8 19) 48(19) 53(95) 67(19) 77(19) 79(19) 82—84(19) 87(19) 89(8) 93 95
 Abragam, A.      55(114) 96 171(165) 190
 Abramenkov, A.V.      82(119) 96
 Abramson, E.      88(137) 97
 Abrikosov, A.A.      13(57) 37(57) 44
 Acetylene, singlet-triplet (S-T) conversion, magnet field interaction      73—76
 Acetylene, singlet-triplet (S-T) conversion, magnetic field influence on excited-state dynamics      88—90
 Achey, R.      176(173) 190
 Adam, E.      168(163) 190
 Adelman, S.A.      194(15) 202(15) 268
 Aharoni, A.      101(2) 120(2) 129(2 67) 130(68—69) 131(67 70 72) 132(2) 185 187
 Al-Laham, M.A.      26(66) 44
 Al-Saquer, M.      165(157) 190
 Alfano, J.C.      201(55) 269
 Algebraic solutions, vibrational energy relaxation, one-harmonic-oscillator bath model      253—255
 Allen, M.P.      193(10) 12) 194(10) 268
 Almeida, L.C.J.      267(110) 270
 Altman, R.A.      104(30) 186
 Amirov, A.      47(46) 90(46) 91(160 166 172—173) 94 97
 Amoretti, G.      163(155—156) 190
 Amos, A.T.      15(59) 44
 Anderson, P.W.      104(42) 186
 Andres, J.L.      26(66) 44
 Andrews, D.L.      192(4) 267
 Angular dependence, nonuniform zero Kelvin magnetization reversal, curling mechanisms      131-133
 Angular dependence, zero Kelvin magnetization reversal, Stoner — Wohlfarth uniform rotation model      126—129
 Anisotropic spin-spin interaction, diazine compounds      92—93
 Anisotropic spin-spin interaction, oxalylfluoride, magnetic field influence on excited-state dynamics      87—88
 Anisotropy, magnetic quantum tunneling, iron
  molecular clusters      152—154 Anisotropy, nonuniform zero Kelvin magnetization reversal, curling mechanisms      129-133
 Anisotropy, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model      136—138
 Anisotropy, zero Kelvin magnetization reversal, Stoner — Wohlfarth uniform rotation model      120—126
 Annihilation mechanisms, nonuniform zero Kelvin magnetization reversal      133—135
 Ansermet, J.-Ph.      104(25 31 35) 111(35) 131(35 74) 132(35 74—76) 146(35 74) 147—148(74) 179(35) 185—187
 Anticrossing density, singlet-triplet (S-T) conversion, acetylene magnetic effects      88—90
 Antony, J.      9(51) 43
 Apsel, S.E.      101(7) 185
 Aqueous solution, vibrational energy relaxation,
  ions      237—247 Aqueous solution, vibrational energy relaxation,
  ions, relaxation mechanism      241—247 Aqueous solution, vibrational energy relaxation,
  ions, relaxation mechanism, bath mode analysis      247 Aqueous solution, vibrational energy relaxation,
  ions, relaxation mechanism, spectral densities      242—243 Aqueous solution, vibrational energy relaxation,
  ions, relaxation mechanism, state densities      241 —242 Aqueous solution, vibrational energy relaxation,
  ions, relaxation mechanism, survival probabilities      243—247 Aqueous solution, vibrational energy relaxation,
  ions, relaxation time      238—241 Arii, T.      103(13) 185
 Array architecture, micro-SQUID magnetometry      113
 Atomic force microscopy (AFM), micro-SQUID magnetometry fabrication      105
 Atomic populations, many-electron tunneling, interatomic currents and paths      18—21
 Aubin, S.M.J.      150(122) 176(122) 189
 Avoided level crossings, magnetic quantum tunneling, iron
  molecular clusters      153—154 Awaga, K.      150(124) 176(124) 189
 Awschalom, D.D.      104(26) 151(26) 186
 Ayala, P.Y.      26(66) 44
 Baba, H.      47(15) 90(15) 92(15) 93
 Bader, J.S.      194(19) 206(19) 217(19) 225(19) 246(19) 268
 Bader, R.      18(65) 44
 Baguenard, B.      121(61) 123(61) 187
 Baker, J.      26(66) 44
 Balabin, I.A.      4—5(24) 8—9(24) 34(24) 36(24) 39(24) 42
 Baldwin, D.P.      90(150) 97
 Balfour, W.J.      82(123) 96
 Ballentine, C.A.      126(63) 187
 Ballou, R.      150(115 123) 154(115) 176(123) 189
 Bansmann, J.      103(20) 185
 Barbara, B.      103(22) 104(22 34—38) 109(36—38) 111(35—38) 113(48) 120(22 59) 121(36—38) 128(65) 131 74) 133(79) 134(22 59 79) 142(36—38 59) 144(36—37) 146(35 74) 147(59 74 79 102) 148(59 74) 149(108) 150(115) 154(115) 176(169) 177(108) 179(22 35) 180(36—37) 185—190
 Barbara, P.J.      201(55) 269
 Bardotti, L.      121(60) 187
 Bardou, N.      103(17) 185
 Barnes, S.E.      163(151) 190
 Baronavski, A.P.      82(126) 96
 Barra, A.L.      150(112) 151(110) 152(110 112) 163(110 112) 188
 Bartenlian, B.      103(17) 185
 Bartsch, W.      133(82) 187
 Bausschlisher, C.W.      90(148) 97
 Bazhin, N.M.      46(5 7) 47(5 33) 93—94
 Bean, C.P.      135(84—85) 141(84—85) 187—188
 Beck, S.M.      82(120) 96
 Benjamin, I.      201—202(53) 269
 Benoit, A.      103(22) 104(22 34—38) 105—106(43—44) 109(36—38) 111(35—38) 114(43—44 51) 120(22 59) 121(36—38) 128(65) 131—132(35 74) 133(79) 134(22 59 79) 142(36—38 59) 144(36—37) 146(35 74) 147(59 74 79) 148(59 74) 179(22 35) 180(36—37) 185—187
 Beratan — Onuchic (BO) model, tunneling currents, long-distance electron tunneling      5
 Beratan, D.N.      3(15) 4(22—423) 5(22—523) 7(23) 8(44) 9(22—923) 11(23 44) 36(23) 39(80) 42—44
 Berkowitz, A.E.      147(103 105) 188
 Berne, B.J.      194(16 19—20) 202(16) 206(19—20) 217(19) 225(19) 246(19) 267(109) 268 270
 Berry, R.S.      49(56) 51(56) 94
 Bertram, H.N.      142(101) 188
 Bertrand, R.      2(1) 41
 Bertsch, G.F.      101(5) 185
 Bessel function, vibrational energy relaxation, quantum probability fluctuation, density matrix moments      251—252
 Bettac, A.      103(20) 185
 Bhushan, M.      104(41) 161(41) 186
 Bian, X.R.      104(30) 186
 Billas, I.M.      101(6) 185
 bin Hussein, M.Z.      82(127) 96
 Binder, K.      193(13) 268
 Binkely, J.S.      26(66) 44
 Biskup, N.      176(173) 188 190
 Bixon, M.      2—3(10) 41 49(55) 51(55) 94
 Bleaney, B.      171(165) 190
 Blind mode techniques, micro-SQUID magnetometry, three-dimensional switching measurements      111—113
 Bloch — Redfield theory, vibrational energy relaxation, Fermi's golden rule, force autocorrelation function      205—206
 Bloomfield, L.A.      101(7) 185
 Blum, K.      55(113) 96
 Boerner, E.D.      142(101) 188
 Bogdanchikov      47—49(39) 62(39) 77(39) 83—84(39) 86—88(39) 94
 Bogge, H.      176(169) 190
 Bohmi(n)an trajectories, tunneling flow vortices      31—32
 Bohminan trajectories, one-electron longdistance tunneling, interatomic currents and paths      10—12
 Boivin, D.      104(36) 109(36) 111(36) 121(36) 142(36) 144(36) 180(36) 186
 Bokecheva, L.      150(120) 154(120) 173(120 167) 189—190
 Bom magneton, singlet-triplet (S-T) conversion, Zeeman interaction operator      62—63
 Bonet Orozco, E.      104(36—38) 109(36—38) 111(36—38) 121(36—38) 128(65) 142(36—38) 144(36—37) 180(36—37) 186—187
 Born — Oppenheimer approximation, singlet- triplet (S-T) conversion mechanism      54—56
 Bouchiat, V.      105(46) 114(46) 186
 Brand, J.C.D.      54—55(97 102) 95—96
 Brandt, A.      39(76—77) 44
 Braun, H.-B.      132(77) 146(77) 187
 Brechin, E.K.      150(124) 176(124) 189
 Brillouin function, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model      135-136
 Broida, H.P.      49(62) 51(62) 95
 Brooks, J.S.      150(119) 154(119) 176(173) 189—190
 Broto, J.M.      147(102) 188
 Brown, J.K.      201(52) 269
 Brown, S.C.      82(124) 96
 Brown, W.F.      135—136(86—88) 180(86—88) 188
 Bruch, L.W.      26(71) 44
 Bruehl, M.      205(71) 269
 Brunei, L.-C.      150(124) 176(124) 189
 Brunner, T.      104(41) 161(41) 186
 Bryant, G.W.      90(159) 97
 Bryant, P.      133(81) 187
 
 | Buchner, M.      198(45) 269 Bunker, P.R.      54—55(105) 96
 Buntine, M.A.      90(150) 97
 Butler, S.      46(2) 93
 Cabral, C.      104(41) 161(41) 186
 Caciuffo, R.      163(155—156) 190
 Caldeira, A.O.      207(89) 211(89) 218(89) 220(89) 225(89) 270
 Caner, M.      49(67) 51(67) 95
 Caneschi, A.      150(111 121) 151—152(109) 160(144) 163(155—156) 168(144) 170(144) 172(166) 176(121 170) 188—190
 Casassa, M.R.      192(2) 267
 Casimiro, D.R.      2—3(7) 26(7) 33(7) 41
 Cavanagh, R.R.      192(2) 267
 Cave, R.      11(53—54) 33(75) 36(78) 43—44
 Cemicchiaro, G.      114(51) 120(59) 134(59) 142(59) 147—148(59) 186—187
 Centroid molecular dynamics,
  ions in aqueous solution, relaxation times      238—241 Centroid molecular dynamics, vibrational energy relaxation, path integral theory      226—227
 Centroid molecular dynamics, vibrational energy relaxation, theoretical background      194—195
 Cerjan, C.J.      133(83) 187
 Chakravaty, S.      149(107) 188
 Challacombe, M.      26(66) 44
 Chance, B.      4(18) 42
 Chandler, D.W.      90(150) 97
 Chandrashekhar, J.      239(102) 270
 Chandrashekhar, V.      104(41) 161(41) 186
 Chang, C.-R.      126(64) 187
 Chang, I.      2—4(6) 26(6) 33(6) 41
 Chang, T.      103(18) 185
 Chapelier, C.      105—106(43—44) 114(43—44) 186
 Chapman, J.N.      103(15) 185
 Chappert, C.      103(17) 185
 Charge redistribution, one-electron long-distance tunneling, interatomic currents and paths      9—12
 Charge transfer, long-distance electron tunneling      3
 Chatelaink, A.      101(6) 185
 Cheeseman, J.R.      26(66) 44
 Chen, W.      26(66) 44
 Chen, Xiaoxi      2—4(2) 40(2) 41
 Cherayil, B.J.      203(64) 269
 Chernov, L.A.      255(104) 270
 Chernyak, V.      3—4(14) 42
 Cheung, A.S.-C.      54—55(98) 95
 Chiorescu, I.      151(126) 173(126) 176(169) 189—190
 Chock, D.P.      49(57) 51(57) 94
 Christou, G.      150(122 124) 176(122 124) 189
 Chu, J.G.      103(18) 185
 Chuang, D.S.      126(63) 187
 Chudnovsky, E.M.      173(168) 177(176) 190
 Chung, M.      8—9(49) 11(49) 24(49) 43
 Ciccotti, G.      193(11) 268
 Cioslowski, J.      26(66) 44
 Cis configuration, oxalylfluoride, magnetic field influence on excited-state dynamics      82
 Clark, J.H.      88(131) 96
 Clarke, J.      104(40) 186
 Clarke, R.      126(62) 187
 Classical limit, vibrational energy relaxation, one-harmonic-oscillator bath model      255—257
 Cleland, A.N.      104(40) 186
 Cline, R.E.      218(94) 270
 Cobalt nanoparticles, nonuniform zero Kelvin magnetization reversal, nucleation and annihilation of domain walls      133—135
 Cobalt nanoparticles, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model      144—146
 Cobalt nanoparticles, zero Kelvin magnetization reversal, Stoner — Wohlfarth uniform rotation model      121—126
 Coffey, W.T.      136(89—90) 137(89—91) 138(94) 188
 Cohen, B.J.      49(72) 51(72) 95
 Coker, D.F.      195(34 36) 232(34 36) 268
 Cold mode techniques, micro-SQUID magnetometry, switching measurements      109—111
 Colin, R.      88(135) 96
 Colussi, A.J.      90(158) 97
 Combet, J.      163(156) 190
 Con, J.B.      88(129) 96
 Conduction bands, long-distance electron tunneling      4
 Conjugated gradient technique, one-electron long-distance tunneling, tunneling matrix element, very large systems      7-8
 Copper proteins, electron transfer, Ruthenium-modified copper protein      21—24
 Coppinger, F.      103(23) 179(23) 185
 Coriolis interaction, oxalylfluoride, magnetic field influence on excited-state dynamics      88
 Coriolis interaction, singlet-triplet (S-T) coupling      56—57
 Coriolis interaction, singlet-triplet (S-T) coupling, first-order perturbation matrix elements      59—61
 Coriolis interaction, singlet-triplet (S-T) coupling, pyrazine magnetic effects      91—92
 Cornette, A.      104(29) 186
 Cornia, A.      150(121) 160(144) 168(144) 170(144) 172(166) 176(121 170) 189—190
 Correlation effects, electron tunneling      40—41
 Coulombic interaction, vibrational energy relaxation influence functional theory      208—209
 Coulombic interaction, vibrational energy relaxation, classical molecular dynamics      200—201
 Coulombic interaction, vibrational energy relaxation, Hamiltonians      199—200
 Cristoph, A.C.      26(70) 44
 Critical current measurements, micro-SQUID magnetometry, magnetization reversal in nanoparticles and clusters      105-109
 Crossover temperature, magnetic quantum tunneling, single-domain nanoparticles      177—178
 Crothers, D.S.F.      136(89—90) 137(89—91) 188
 Cruz, A.R.      89—90(143) 97
 Cubic anisotropy, zero Kelvin magnetization reversal, Stoner — Wohlfarth uniform rotation model      126—129
 Cuccoli, A.      168(163) 190
 Cui, Q.      90(154—155) 97
 Curl, R.F.      55(110) 96
 Curling, nonuniform zero Kelvin magnetization reversal      129—133
 Current density operator, many-electron tunneling      12—13
 Current density operator, many-electron tunneling, spatial distribution      13—15
 Cushing, J.      10(52) 31(52) 43
 Daizadeh, I.      5(30—531) 6(38) 8(38 45 48—49) 9(38 49) 10(30—31) 11(49) 24(49) 26(31) 31(31 45) 34(45) 39—40(45) 42—43
 Dalai, N.S.      150(119) 154(119) 176(173) 189—190
 Damping mechanisms, magnetic quantum tunneling, single-domain nanoparticles      178
 Dang, L.X.      267(108) 270
 Dashen, R.      255(106) 263(106) 270
 David, E.F.      203(66) 269
 Davis, W.      3(16) 42
 Dayem bridges, micro-SQUID magnetometry configuration      104—105
 Dayem, A.H.      104(42) 186
 de Heer, W.A.      101(6) 185
 Dearborn, E.F.      49(71) 51(71) 95
 Debrunner, P.      150(112) 152(112) 163(112) 188
 DeFrees, D.J.      26(66) 44
 Del Barco, E.      176(173) 190
 Delfs, C.      152(127) 189
 Demagnetization factors, nonuniform zero Kelvin magnetization reversal, curling mechanisms      129—133
 Demoncy, N.      104(36) 109(36) 111(36) 121(36) 142(36) 144(36) 180(36) 186
 Deng, J.      101(7) 185
 Dennison, C.      2—3(4) 7(4) 33(4) 41
 Density functional theory (DFT), tunneling current calculations      38—39
 Density matrix moments, vibrational energy relaxation, quantum probability fluctuation      248—252
 Density of states,
  ions, aqueous solution      241—242 Deshmukh, M.M.      104(33) 186
 DeVault, D.      2(1) 4(18) 41—42
 Devoret, M.H.      104(40) 186
 Di Bilio, A.      2—3(4) 7(4) 33(4) 41
 Di Lauro, C.      54—55(101—102) 96
 Diazines, magnetic field influence on excited-state dynamics      90—93
 Diazines, magnetic field influence on excited-state dynamics, anisotropic spin-spin constants      92—93
 Diazines, magnetic field influence on excited-state dynamics, pyrazine      90—92
 Diazines, magnetic field influence on excited-state dynamics, pyrimidine      92
 Diazines, magnetic field influence on excited-state dynamics, s-triazine      92
 Dietz, W.      49(79) 51(79) 95
 Dilley, N.R.      150(122) 176(122) 189
 Dipolar distribution, environmental decoherence effects, molecular clusters      166—168
 Dirac, P.A.M.      30(72) 44
 Direct mechanism (DM) theory, defined      46—49
 Direct mechanism (DM) theory, singlet-triplet (S-T) conversion mechanism      52—53
 Dissipation kernel, vibrational energy relaxation, influence functional theory      225—226
 Distribution function, quantum probability fluctuation, vibrational energy relaxation      261—263
 Distribution function, vibrational energy relaxation, quantum probability fluctuation      261—263
 DiVincenzo, D.P.      161(145) 189
 Dobrovitski, V.V.      165(157) 176(171) 190
 Domain walls, magnetic quantum tunneling, single-domain nanoparticles and wires, very low temperatures      180—181
 Domain walls, magnetization reversal and      101—102
 Domain walls, nonuniform zero Kelvin magnetization reversal, nucleation and annihilation      133—135
 Domain walls, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model      146—147
 Domain walls, zero Kelvin magnetization reversal, properties of      114—115
 Donor-bridge-acceptor systems, one-electron long-distance tunneling, protein pruning techniques      8—9
 Donor-bridge-acceptor systems, one-electron long-distance tunneling, tunneling matrix element, very large systems      6—8
 Donor-bridge-acceptor systems, Ruthenium-modified copper protein, His/Met residue tunneling transition      25—27
 Dorantes-Devila, J.      101(4) 185
 Dormann, J.L.      103(8) 136(89—90) 137(89—91) 138(8) 141(8) 185 188
 Dorsey, A.T.      149(107) 188
 Doudin, B.      104(25 35) 111(35) 131(35 74) 132(35 74—76) 146(35 74) 147—148(74) 179(35) 185—187
 Dr able, K.E.      91(161 175) 97—98
 
 | 
 |  |  |  | Ðåêëàìà |  |  |  |  |  |