|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 118 |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Richards, J.H. 2—3(6—7) 4(6) 26(6—7) 33(6—7) 41
Richardson, J.T. 147(104) 188
Richter, H.J. 103(14) 185
Rick, S.W. 267(109) 270
Riedle, E. 91(170—171) 97
Rishcon, S.A. 104(30) 186
Ritvold, P.A. 142(97) 188
Robb, M.A. 26(66) 44
Roberta, R. 155(129) 159(129) 168(129) 189
Robinson, G.W. 49(60—61 63 68) 51(60—61 63 68) 95
Roche, K.P. 104(30) 186
Roitberg, A.E. 3(16) 6(42) 42—43
Rose, G. 155(135—136) 160(136) 170(136) 189
Rossky, P.J. 195(33 35) 232(33 35) 233(97) 268 270
Rotational-orbit-spin-orbit (ROSO) perturbation, singlet-triplet (S-T) conversion mechanism 49—50
Rotational-orbit-spin-orbit (ROSO) perturbation, singlet-triplet (S-T) conversion, magnet field interaction 69—78
Rotational-orbit-spin-orbit (ROSO) perturbation, singlet-triplet (S-T) conversion, second-order matrix elements 61—62
Rothschild W.G. 206(79) 218(79) 269
Rousseaux, E. 103(17) 185
Rubin J.J. 49(71) 51(71) 95
Ruehrig, M. 133(82) 187
Ruge, J. 39(76) 44
Ruiz, D. 150(120) 154(120) 173(120) 189
Rutel, I. 176(173) 190
Ruthenium complexes, Ruthenium-modified copper protein, electron transfer 21—24
Ruthenium complexes, Ruthenium-modified copper protein, His/Met residue tunneling transition 24—27
Ruthenium complexes, transition metals, tunneling mechanisms 24—27
Rutter, P. 103(23) 179(23) 185
s-Triazine, anisotropic spin-spin constants 92—93
s-Triazine, magnetic field influence on excited-state dynamics 92
Saigusa, H. 91(167—168) 92(168) 97
Sailing, C. 103(16) 185
Sand, M. 163(147) 190
Sander, S.P. 90(158) 97
Sangregorio, C. 150(116 118 121) 155(118 129) 159(129) 165(116 118) 168(118 129 161) 176(121) 189—190
Sarachik, M.P. 150(1 14 120) 154(114 120) 173(120) 188—189
Satoh, M. 239(101) 270
Scanning microscopy, micro-SQUID magnetometry 114
Schafer, R. 101(1) 185
Schawlov, A.L. 55(111) 96
Schelp, L.F. 104(32) 186
Schlag, E.W. 47(25 31) 54—55(108) 57—58(108) 91(170) 94 96—97
Schlegel, H.B. 26(66) 44
Schmidt, A. 207(88) 211(88) 218(88) 220(88) 225(88) 270
Schofield, S.A. 197(44) 251(44) 253(44) 255(44) 269
Schroeder, J. 201(58) 269
Schroedinger equation, Landau — Zener tunneling, iron molecular clusters 155—160
Schroedinger equation, transfer matrix element 32—33
Schroedinger equation, vibrational energy relaxation, mean field approximation 229—232
Schroedinger equation, vibrational energy relaxation, mixed quantum-classical molecular dynamics 228—229
Schroedinger equation, vibrational energy relaxation, theoretical background 193—196
Schultz, S. 103(16 19) 133(78) 142(19) 185 187
Schulz, C.E. 150(112) 152(112) 163(112).188
Schwarzer, D. 201(58) 269
Schweinboeck, T. 104(28) 186
Schweizer, J. 151—152(109) 188
Schwinger, J. 213(92) 270
Second-order perturbations, singlet-triplet (S-T) conversion, matrix elements 61—62
Second-order perturbations, vibrational energy relaxation, influence action 223—226
Second-order perturbations, vibrational energy relaxation, perturbative influence functional, nonlinear couplings 214—217
Selzle, H.L. 47(25 31) 94
Semiclassical theory, magnetic quantum tunneling, splitting oscillations 163
Senz, V. 103(20) 185
Sessoli, R. 113(47) 150(111—113 115—116 121) 151(109—110 126) 152(109—110 112 127) 154(113 115) 158(140) 160(144) 163(110 112 155) 165(116) 168(144) 169(47) 170(144 164) 171(140) 172(166) 173(126 140) 175(47 140) 176(121 170) 186 188—188
Shaw, T.M. 104(30) 186
Shephard, M. 11(55—56) 44
Shiga, M. 195(28) 196(41—43) 207(28) 210(28) 233(43) 238(41—43 99) 241(41—42 99) 246(28) 268 270
Shklovskii, B. 3(12) 42
Sholl, D.S. 195(39) 268
Shtrikman, S. 129(66) 131(66) 187
Siddarth, P. 6(41) 8(41) 43
Sides, S.W. 142(97) 188
Siebrand, W. 49(64—66) 51(64—66) 95
Silbey, R.J. 206(84) 270
Singer, K.E. 103(23) 179(23) 185
Single tunneling orbital approximation (STOA), tunneling flow vortices 28—32
Single-domain particles, magnetic quantum tunneling 176—183
Single-domain particles, magnetic quantum tunneling, nanoparticles 177—178
Single-domain particles, magnetic quantum tunneling, quantization techniques 181—182
Single-domain particles, magnetic quantum tunneling, very-low-temperature measurements 179—181
Single-domain particles, magnetization reversal and 101—102
Single-particle measurement techniques, magnetization reversal, nanometer-sized particles and clusters 102—114
Single-particle measurement techniques, magnetization reversal, nanometer-sized particles and clusters, micro-SQUID magnetometry 104—114
Single-particle measurement techniques, magnetization reversal, nanometer-sized particles and clusters, micro-SQUID magnetometry, array schematics 113
Single-particle measurement techniques, magnetization reversal, nanometer-sized particles and clusters, micro-SQUID magnetometry, blind mode three-dimensional switching field measurements 111—113
Single-particle measurement techniques, magnetization reversal, nanometer-sized particles and clusters, micro-SQUID magnetometry, cold mode magnetization switching measurements 109—111
Single-particle measurement techniques, magnetization reversal, nanometer-sized particles and clusters, micro-SQUID magnetometry, critical current magnetization measurements 105—109
Single-particle measurement techniques, magnetization reversal, nanometer-sized particles and clusters, micro-SQUID magnetometry, fabrication techniques 105
Single-particle measurement techniques, magnetization reversal, nanometer-sized particles and clusters, micro-SQUID magnetometry, future applications 114
Single-particle measurement techniques, magnetization reversal, nanometer-sized particles and clusters, micro-SQUID magnetometry, hysteresis loop measurement feedback 109
Single-particle measurement techniques, magnetization reversal, nanometer-sized particles and clusters, micro-SQUID magnetometry, scanning microscopy 114
Single-particle measurement techniques, magnetization reversal, nanometer-sized particles and clusters, micro-SQUID magnetometry, SQUID configuration selection 104-105
Single-particle measurement techniques, magnetization reversal, nanometer-sized particles and clusters, theoretical background 103—104
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms 56—62
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, Coriolis interaction operator 56—62
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, coupling mechanisms, first-order perturbation matrix elements 58—61
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, electron-spin wave functions 58
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, magnetic and nonmagnetic interaction schemes 68—78
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, second-order perturbation matrix elements 61-62
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, spin-orbit perturbation operator 62—63
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, triplet-state wave functions, magnetic field presence 78—82
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, vibronic interaction operator 56
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, Zeeman perturbation matrix elements 62—68
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, Zeeman perturbation matrix elements, high-field limit 65—67
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, Zeeman perturbation matrix elements, interaction operator 62—63
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, Zeeman perturbation matrix elements, low-field limit 63—65
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, Zeeman perturbation matrix elements, nuclear angular momentum 67—68
Singlet-triplet (S-T) conversion mechanism, excited-state magnetic field dynamics, acetylene 88—90
Singlet-triplet (S-T) conversion mechanism, excited-state magnetic field dynamics, anisotropic spin-spin constants in diazine and triazine 92—93
Singlet-triplet (S-T) conversion mechanism, excited-state magnetic field dynamics, diazines 90—92
Singlet-triplet (S-T) conversion mechanism, excited-state magnetic field dynamics, oxalylfluoride 82—88
Singlet-triplet (S-T) conversion mechanism, theoretical background 47—53
Singlet-triplet (S-T) conversion mechanism, triplet-state structure 53—56
Skinner, J.L. 194(21—25) 206(21—25 83) 225—226(83) 246(22 25 83) 268 270
Skourtis, S.S. 3(15) 4(23) 5(23) 7(23) 9(23) 11(23) 36(23) 42
Skubnevskaya, G.I. 46(5 7) 47(5) 93
Smalley, R.E. 82(120) 96
Smirnov-Rueda, R. 142(98) 188
Solarz, R. 46(2) 93
Solute/solvent degrees of freedom, ions in aqueous solution, relaxation 244—247
Solute/solvent degrees of freedom, vibrational energy relaxation, Hamiltonians 197—200
Solute/solvent degrees of freedom, vibrational energy relaxation, mixed quantum-classical molecular dynamics 232—237
Solute/solvent degrees of freedom, vibrational energy relaxation, theoretical background 195—196
Solvated electrons, vibrational energy relaxation, mixed quantum-classical molecular dynamics 232—237
Sorace, L. 150(121) 176(121) 189
Sorokin, N.I. 46(50) 47(5 33) 93—94
Space, B. 195(36) 232(36) 268
Spangler, L.H. 46(14) 47(14 43—45) 90(14 43—45) 91(43—45 169) 93—94 97
Spatial distribution, electron vs. hole transfer 34—36
Spatial distribution, many-electron tunneling 13—15
Spectral density, ions, aqueous solution 242—243
Spectral density, vibrational energy relaxation, perturbative influence functional, nonlinear couplings 215—217
Spin-orbit perburbation (SO), magnetic quantum tunneling, iron molecular clusters 152—154
Spin-orbit perburbation (SO), singlet-triplet (S-T) conversion 49—50
Spin-orbit perburbation (SO), singlet-triplet (S-T) conversion, coupling operators 57—58
Spin-orbit perburbation (SO), singlet-triplet (S-T) conversion, magnet field interaction 71—78
Spin-orbit perburbation (SO), singlet-triplet (S-T) conversion, triplet-state structure 54—56
Spin-orbit perburbation (SO), singlet-triplet (S-T) coupling, first-order perturbation matrix elements 60—61
Spin-spin interaction, triplet states 48—49
Srinivasan, R. 49(70) 51(70) 95
Stamp, P.C.E. 155(135) 160(143) 165(143 159—160) 166(143) 168(143) 176(172) 189—190
Stannard, P.R. 46—47(23) 62(23) 64(23) 93
Stanton, J.F. 90(154) 97
Stanton, R.E. 15(60) 44
Stawiaasz, K. 104(41) 161(41) 186
Steepest descent method, time-dependent transition probability, vibrational energy relaxation 218—223
Stefanov, B.B. 26(66) 44
Stein, K. 104(41) 161(41) 186
Stephenson, J.C. 192(2) 267
Steubing, W. 46(1) 93
| Stevens, C.G. 54—55(97) 95
Stewart, J.R. 26(66) 44
Stole, R.H. 194(15) 202(15) 268
Stoner — Wohlfarth uniform rotation model, magnetic quantum tunneling, quantization techniques, single-domain nanoparticles 181—183
Stoner — Wohlfarth uniform rotation model, zero Kelvin magnetization reversal, nanometer-sized particles and clusters 115—129
Stoner — Wohlfarth uniform rotation model, zero Kelvin magnetization reversal, nanometer-sized particles and clusters, cubic anisotropy 126—129
Stoner — Wohlfarth uniform rotation model, zero Kelvin magnetization reversal, nanometer-sized particles and clusters, experimental data 120—126
Stoner, C. 115(52) 187
Stratt, R.M. 198(45—47) 202(61) 203(66—68) 269
Stuart, S.J. 267(109) 270
Stuchebrukhov, A.A. 5(25—34) 6(36—38) 7(37 43) 8(36 38 45—50) 9(25—29 34 38 49—51) 10(25—34 36—37) 11(26 34 49—50) 13(28) 17(64) 24(26 50) 26(31) 31(31 45) 34(45—47) 36(50) 38(33 50) 39(33 45—46) 40(45—46) 42—44
Stueckelberg, E.C.G. 154(132) 189
Suhl, H. 133(81) 187
Sulpice, A. 113(48) 133—134(79) 147(79) 186—187
Sumitani, M. 46(12) 93
Superconducting quantum interference device (SQUID) see "Micro-SQUID mangetometry"
Superexchange mechanisms, long-distance electron tunneling 2—4
Suran, G. 103—104(22) 120(22) 134(22) 179(22) 185
Surface hopping approximation, vibrational energy relaxation, theoretical background 195—196
Survival probability estimation, ions in aqueous solution, relaxation 243—247
Sutin, N. 2—4(8) 26(8) 32(8) 40(8) 41
Suzuki, T. 89(142) 97
Switching measurements, magnetic quantum tunneling, single-domain nanoparticles and wires, very low temperatures 179—181
Switching measurements, micro-SQUID magnetometry, blind mode method, three-dimensional switching 111—113
Switching measurements, micro-SQUID magnetometry, cold mode techniques 109—111
Switching measurements, nonuniform zero Kelvin magnetization reversal, nucleation and annihilation of domain walls 134—135
Switching measurements, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model 140—141
Switching measurements, zero Kelvin magnetization reversal, Stoner — Wohlfarth uniform rotation model 121—126
Sykes, G. 2—3(4) 7(4) 33(4) 41
Szabo, A. 13(58) 15(58) 19(58) 44
Szarka, A.Z. 203(62) 269
Takahashi, K. 49(80) 51(80) 95
Takemura, T. 46(15) 47(15—16 47—50) 48(16 47 49—50) 90(15—16 47—50) 92(16 50 176—179) 93—94 98
Tamai, N. 53(95) 95
Tartarskii, V. 255(107) 270
Taskin, T. 103(23) 179(23) 185
Tayler, P.R. 90(148) 97
Taylor expansion, time-dependent transition probability, vibrational energy relaxation 218—223
Tejada, J. 150(114) 154(114) 176(173) 188 190
Telegraph noise measurements, magnetic quantum tunneling, single-domain nanoparticles and wires, very low temperatures 179—181
Telegraph noise measurements, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model 141—142
Temperature effects, Landau — Zener tunneling, environmental decoherence 171—175
Temperature effects, magnetic quantum tunneling, single-domain wires, very low temperatures 179-181
Temperature effects, magnetization reversal, nanometer-sized particles and clusters 135—149
Temperature effects, magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model 136—138
Temperature effects, magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model, cobalt cluster applications 144—146
Temperature effects, magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model, deviations from 147—149
Temperature effects, magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model, nanoparticle applications 142—144
Temperature effects, magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model, nickel wire applications 146—147
Temperature effects, magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model, switching field measurements 140—141
Temperature effects, magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model, telegraph noise measurements 141-142
Temperature effects, magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model, waiting time measurements 138—140
Temperature effects, vibrational energy relaxation, one-harmonic- oscillator bath model 257—260
Terashima, T. 196(43) 233(43) 238(43) 268
Terazima, M. 91(172) 97
Thiavilie's calculation, zero Kelvin magnetization reversal, Stoner — Wohlfarth uniform rotation model 118—120
Thiaville, A. 104(38) 105(46) 109(38) 111(38) 114(46) 115(54—55) 117(54—55) 119(54) 121(38) 122(54) 126(54—55) 138(55) 142(38) 186—187
Thirion, C. 104(39) 109(39) 121(39) 142(39) 186
Thomas, L. 103—104(22) 120(22 59) 133(79) 134(22 59 79) 142(59) 147(59 79 102) 148(59) 150(115) 154(115) 179(22) 185 187—189
Thorwart, M. 155(137) 189
Three-dimensional switching measurements, micro-SQUID magnetometry, blind mode techniques 111—113
Three-dimensional switching measurements, zero Kelvin magnetization reversal, Stoner — Wohlfarth uniform rotation model 120—126
Tildesley, D.J. 193(10 12) 194(10) 268
Time-dependent transition probability, ions in aqueous solution, relaxation 243—247
Time-dependent transition probability, vibrational energy relaxation, mean field approximation 229—232
Time-dependent transition probability, vibrational energy relaxation, mixed quantum-classical molecular dynamics 232—237
Time-dependent transition probability, vibrational energy relaxation, perturbative influence functional, nonlinear couplings 217—223
Time-resolved pump-probe spectroscopy, vibrational energy relaxation 192—193
Tinti, D.S. 82(121) 96
Tokmakoff, A. 206(81—82) 269—270
Tonomura, A. 103(13) 185
Total atomic currents, one-electron longdistance tunneling, interatomic currents and paths 10—12
Townes, C.H. 55(111) 96
Trajectory calculations, vibrational energy relaxation, mixed quantum-classical molecular dynamics 232—237
Tramer, A. 46(3 20—21) 47(3 20—21 24 34 35) 49(77) 51—52(77) 91(165) 93—95 97
Trans configuration, oxalylfluoride, magnetic field influence on excited-state dynamics 82
Transition metal complexes, tunneling mechanisms 24—27
Transition state, tunneling calculations 33—34
Transverse field dependence, Landau — Zener tunneling, environmental decoherence 175
Transverse field dependence, magnetic quantum tunneling, splitting oscillations 161—165
Trapezoidal numerical integration, vibrational energy relaxation, time-dependent transition probability 222—223
Traverse, A. 121(61) 123(61) 187
Treilleux, M. 121(60) 187
Treves, D. 129(66) 131(66) 187
Trie, C. 47(30) 49(77 87) 51—52(77 87) 91(165) 94—95 97
Triechel, M. 203(62) 269
Triplet-state structure, singlet-triplet (S-T) conversion mechanism 53—56
Triplet-state structure, singlet-triplet (S-T) conversion mechanism, wave functions in magnetic field 78—82
Tronc, E. 103(8) 138(8) 141(8) 185
Trucks, G.W. 26(66) 44
Tsuchiya, S. 88(136) 89(146) 96—97
Tuaillon, J. 104(34) 120(60) 186—187
Tucker, S.C. 203(63) 269
Tuckerman, M. 194(16) 202(16) 268
Tully, J.C. 195(32 37—39) 196(32) 201(52) 268—269
Tunnel splitting oscillations, magnetic quantum tunneling, iron molecular clusters 160—165
Tunnel splitting oscillations, magnetic quantum tunneling, numerical diagonalization 163—165
Tunnel splitting oscillations, magnetic quantum tunneling, semiclassical descriptions 163
Tunneling currents, calculations, Gaussian-type functions (GFT) vs. real-space (grid) calculations 37—38
Tunneling currents, calculations, new analytical techniques 37
Tunneling currents, calculations, protein dynamic effects 39—40
Tunneling currents, calculations, Ruthenium-modified copper protein electron transfer 21—24
Tunneling currents, long-distance electron tunneling, theoretical background 5—6
Tunneling matrix element see also "Matrix elements"
Tunneling matrix element, many-electron tunneling, Hartree — Fock approximation 15—18
Tunneling matrix element, many-electron tunneling, interatomic currents and paths 21
Tunneling matrix element, many-electron tunneling, spatial distribution of current density 13—15
Tunneling matrix element, one-electron long-distance tunneling, interatomic currents and paths 10—12
Tunneling matrix element, one-electron long-distance tunneling, very large systems 6—8
Tupitsyn, I. 160(142) 189
Turk, B. 147(104) 188
Twigg, M.V. 147(104) 188
Two-level fluctuations (TLF), magnetic quantum tunneling, single-domain nanoparticles and wires, very low temperatures 179—181
Tyrrell, J. 82(125) 96
Tyulin, V.I. 82(119) 96
Uher, C. 126(62) 187
Ungar, L.W. 39(79) 44
Uniform rotation (Stoner — Wohlfarth model), zero Kelvin magnetization reversal, nanometer-sized particles and clusters 115—129
Uniform rotation (Stoner — Wohlfarth model), zero Kelvin magnetization reversal, nanometer-sized particles and clusters, cubic anisotropy 126—129
Uniform rotation (Stoner — Wohlfarth model), zero Kelvin magnetization reversal, nanometer-sized particles and clusters, experimental data 120—126
Uniform rotation (Stoner — Wohlfarth model), zero Kelvin magnetization reversal, nanometer-sized particles and clusters, generalization 116—119
Vaille, J.L. 121(60) 187
Valentine, R.W. 31(73) 44
Van Craen, J.C. 88(135) 96
van den Berg, H.A.M. 133 134(80) 187
van der Meer, B.J. 91(162—164) 97
Van Uitert, L.G. 49(71) 51(71) 95
Van Vleck theory, singlet-triplet (S-T) conversion mechanism 49—50
Van Vleck, J.L. 49(90—92) 54—55(90—92) 58(90—92) 95
Vaures, A. 104(32) 186
Vavrn, W. 126(62) 187
Veillet, P. 103(17) 185
Velev, P. 206(87) 270
Velocity operator, many-electron tunneling, interatomic currents and paths 20—21
Vernon, F.L. 165(158) 190 195(26) 207—208(26) 211(26) 217(26) 268
Vibrational energy relaxation, in aqueous solution 237—247
Vibrational energy relaxation, in aqueous solution, relaxation mechanism 241—247
Vibrational energy relaxation, in aqueous solution, relaxation mechanism, bath mode analysis 247
Vibrational energy relaxation, in aqueous solution, relaxation mechanism, spectral densities 242—243
Vibrational energy relaxation, in aqueous solution, relaxation mechanism, state densities 241—242
Vibrational energy relaxation, in aqueous solution, relaxation mechanism, survival probabilities 243—247
Vibrational energy relaxation, in aqueous solution, relaxation time 238—241
Vibrational energy relaxation, classical Langevin equation 201—203
Vibrational energy relaxation, classical molecular dynamics 200—201
Vibrational energy relaxation, Fermi's golden rule, classical force autocorrelation function 203—206
Vibrational energy relaxation, Hamiltonian parameters 197—200
Vibrational energy relaxation, mixed quantum-classical molecular dynamics 228—237
Vibrational energy relaxation, mixed quantum-classical molecular dynamics, applications 232—237
Vibrational energy relaxation, mixed quantum-classical molecular dynamics, mean field approximation 229—232
Vibrational energy relaxation, path integral approach 206—227
|
|
|
Ðåêëàìà |
|
|
|