Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 118
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 118



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in Chemical Physics. Volume 118

Àâòîðû: Prigogine I. (ed.), Rice S.A. (ed.)

Àííîòàöèÿ:

This is the only series of volumes available that represents the cutting edge of research relative to advances in chemical physics. Provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. Continues to report recent advances with significant, up-to-date chapters. Contributing authors are internationally recognized researchers.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 304

Äîáàâëåíà â êàòàëîã: 08.12.2013

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Richards, J.H.      2—3(6—7) 4(6) 26(6—7) 33(6—7) 41
Richardson, J.T.      147(104) 188
Richter, H.J.      103(14) 185
Rick, S.W.      267(109) 270
Riedle, E.      91(170—171) 97
Rishcon, S.A.      104(30) 186
Ritvold, P.A.      142(97) 188
Robb, M.A.      26(66) 44
Roberta, R.      155(129) 159(129) 168(129) 189
Robinson, G.W.      49(60—61 63 68) 51(60—61 63 68) 95
Roche, K.P.      104(30) 186
Roitberg, A.E.      3(16) 6(42) 42—43
Rose, G.      155(135—136) 160(136) 170(136) 189
Rossky, P.J.      195(33 35) 232(33 35) 233(97) 268 270
Rotational-orbit-spin-orbit (ROSO) perturbation, singlet-triplet (S-T) conversion mechanism      49—50
Rotational-orbit-spin-orbit (ROSO) perturbation, singlet-triplet (S-T) conversion, magnet field interaction      69—78
Rotational-orbit-spin-orbit (ROSO) perturbation, singlet-triplet (S-T) conversion, second-order matrix elements      61—62
Rothschild W.G.      206(79) 218(79) 269
Rousseaux, E.      103(17) 185
Rubin J.J.      49(71) 51(71) 95
Ruehrig, M.      133(82) 187
Ruge, J.      39(76) 44
Ruiz, D.      150(120) 154(120) 173(120) 189
Rutel, I.      176(173) 190
Ruthenium complexes, Ruthenium-modified copper protein, electron transfer      21—24
Ruthenium complexes, Ruthenium-modified copper protein, His/Met residue tunneling transition      24—27
Ruthenium complexes, transition metals, tunneling mechanisms      24—27
Rutter, P.      103(23) 179(23) 185
s-Triazine, anisotropic spin-spin constants      92—93
s-Triazine, magnetic field influence on excited-state dynamics      92
Saigusa, H.      91(167—168) 92(168) 97
Sailing, C.      103(16) 185
Sand, M.      163(147) 190
Sander, S.P.      90(158) 97
Sangregorio, C.      150(116 118 121) 155(118 129) 159(129) 165(116 118) 168(118 129 161) 176(121) 189—190
Sarachik, M.P.      150(1 14 120) 154(114 120) 173(120) 188—189
Satoh, M.      239(101) 270
Scanning microscopy, micro-SQUID magnetometry      114
Schafer, R.      101(1) 185
Schawlov, A.L.      55(111) 96
Schelp, L.F.      104(32) 186
Schlag, E.W.      47(25 31) 54—55(108) 57—58(108) 91(170) 94 96—97
Schlegel, H.B.      26(66) 44
Schmidt, A.      207(88) 211(88) 218(88) 220(88) 225(88) 270
Schofield, S.A.      197(44) 251(44) 253(44) 255(44) 269
Schroeder, J.      201(58) 269
Schroedinger equation, Landau — Zener tunneling, iron $(Fe_{8})$ molecular clusters      155—160
Schroedinger equation, transfer matrix element      32—33
Schroedinger equation, vibrational energy relaxation, mean field approximation      229—232
Schroedinger equation, vibrational energy relaxation, mixed quantum-classical molecular dynamics      228—229
Schroedinger equation, vibrational energy relaxation, theoretical background      193—196
Schultz, S.      103(16 19) 133(78) 142(19) 185 187
Schulz, C.E.      150(112) 152(112) 163(112).188
Schwarzer, D.      201(58) 269
Schweinboeck, T.      104(28) 186
Schweizer, J.      151—152(109) 188
Schwinger, J.      213(92) 270
Second-order perturbations, singlet-triplet (S-T) conversion, matrix elements      61—62
Second-order perturbations, vibrational energy relaxation, influence action      223—226
Second-order perturbations, vibrational energy relaxation, perturbative influence functional, nonlinear couplings      214—217
Selzle, H.L.      47(25 31) 94
Semiclassical theory, magnetic quantum tunneling, splitting oscillations      163
Senz, V.      103(20) 185
Sessoli, R.      113(47) 150(111—113 115—116 121) 151(109—110 126) 152(109—110 112 127) 154(113 115) 158(140) 160(144) 163(110 112 155) 165(116) 168(144) 169(47) 170(144 164) 171(140) 172(166) 173(126 140) 175(47 140) 176(121 170) 186 188—188
Shaw, T.M.      104(30) 186
Shephard, M.      11(55—56) 44
Shiga, M.      195(28) 196(41—43) 207(28) 210(28) 233(43) 238(41—43 99) 241(41—42 99) 246(28) 268 270
Shklovskii, B.      3(12) 42
Sholl, D.S.      195(39) 268
Shtrikman, S.      129(66) 131(66) 187
Siddarth, P.      6(41) 8(41) 43
Sides, S.W.      142(97) 188
Siebrand, W.      49(64—66) 51(64—66) 95
Silbey, R.J.      206(84) 270
Singer, K.E.      103(23) 179(23) 185
Single tunneling orbital approximation (STOA), tunneling flow vortices      28—32
Single-domain particles, magnetic quantum tunneling      176—183
Single-domain particles, magnetic quantum tunneling, nanoparticles      177—178
Single-domain particles, magnetic quantum tunneling, quantization techniques      181—182
Single-domain particles, magnetic quantum tunneling, very-low-temperature measurements      179—181
Single-domain particles, magnetization reversal and      101—102
Single-particle measurement techniques, magnetization reversal, nanometer-sized particles and clusters      102—114
Single-particle measurement techniques, magnetization reversal, nanometer-sized particles and clusters, micro-SQUID magnetometry      104—114
Single-particle measurement techniques, magnetization reversal, nanometer-sized particles and clusters, micro-SQUID magnetometry, array schematics      113
Single-particle measurement techniques, magnetization reversal, nanometer-sized particles and clusters, micro-SQUID magnetometry, blind mode three-dimensional switching field measurements      111—113
Single-particle measurement techniques, magnetization reversal, nanometer-sized particles and clusters, micro-SQUID magnetometry, cold mode magnetization switching measurements      109—111
Single-particle measurement techniques, magnetization reversal, nanometer-sized particles and clusters, micro-SQUID magnetometry, critical current magnetization measurements      105—109
Single-particle measurement techniques, magnetization reversal, nanometer-sized particles and clusters, micro-SQUID magnetometry, fabrication techniques      105
Single-particle measurement techniques, magnetization reversal, nanometer-sized particles and clusters, micro-SQUID magnetometry, future applications      114
Single-particle measurement techniques, magnetization reversal, nanometer-sized particles and clusters, micro-SQUID magnetometry, hysteresis loop measurement feedback      109
Single-particle measurement techniques, magnetization reversal, nanometer-sized particles and clusters, micro-SQUID magnetometry, scanning microscopy      114
Single-particle measurement techniques, magnetization reversal, nanometer-sized particles and clusters, micro-SQUID magnetometry, SQUID configuration selection      104-105
Single-particle measurement techniques, magnetization reversal, nanometer-sized particles and clusters, theoretical background      103—104
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms      56—62
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, Coriolis interaction operator      56—62
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, coupling mechanisms, first-order perturbation matrix elements      58—61
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, electron-spin wave functions      58
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, magnetic and nonmagnetic interaction schemes      68—78
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, second-order perturbation matrix elements      61-62
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, spin-orbit perturbation operator      62—63
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, triplet-state wave functions, magnetic field presence      78—82
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, vibronic interaction operator      56
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, Zeeman perturbation matrix elements      62—68
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, Zeeman perturbation matrix elements, high-field limit      65—67
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, Zeeman perturbation matrix elements, interaction operator      62—63
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, Zeeman perturbation matrix elements, low-field limit      63—65
Singlet-triplet (S-T) conversion mechanism, coupling mechanisms, Zeeman perturbation matrix elements, nuclear angular momentum      67—68
Singlet-triplet (S-T) conversion mechanism, excited-state magnetic field dynamics, acetylene      88—90
Singlet-triplet (S-T) conversion mechanism, excited-state magnetic field dynamics, anisotropic spin-spin constants in diazine and triazine      92—93
Singlet-triplet (S-T) conversion mechanism, excited-state magnetic field dynamics, diazines      90—92
Singlet-triplet (S-T) conversion mechanism, excited-state magnetic field dynamics, oxalylfluoride      82—88
Singlet-triplet (S-T) conversion mechanism, theoretical background      47—53
Singlet-triplet (S-T) conversion mechanism, triplet-state structure      53—56
Skinner, J.L.      194(21—25) 206(21—25 83) 225—226(83) 246(22 25 83) 268 270
Skourtis, S.S.      3(15) 4(23) 5(23) 7(23) 9(23) 11(23) 36(23) 42
Skubnevskaya, G.I.      46(5 7) 47(5) 93
Smalley, R.E.      82(120) 96
Smirnov-Rueda, R.      142(98) 188
Solarz, R.      46(2) 93
Solute/solvent degrees of freedom, $CN^{-}$ ions in aqueous solution, relaxation      244—247
Solute/solvent degrees of freedom, vibrational energy relaxation, Hamiltonians      197—200
Solute/solvent degrees of freedom, vibrational energy relaxation, mixed quantum-classical molecular dynamics      232—237
Solute/solvent degrees of freedom, vibrational energy relaxation, theoretical background      195—196
Solvated electrons, vibrational energy relaxation, mixed quantum-classical molecular dynamics      232—237
Sorace, L.      150(121) 176(121) 189
Sorokin, N.I.      46(50) 47(5 33) 93—94
Space, B.      195(36) 232(36) 268
Spangler, L.H.      46(14) 47(14 43—45) 90(14 43—45) 91(43—45 169) 93—94 97
Spatial distribution, electron vs. hole transfer      34—36
Spatial distribution, many-electron tunneling      13—15
Spectral density, $CN^{-}$ ions, aqueous solution      242—243
Spectral density, vibrational energy relaxation, perturbative influence functional, nonlinear couplings      215—217
Spin-orbit perburbation (SO), magnetic quantum tunneling, iron $(Fe_{8})$ molecular clusters      152—154
Spin-orbit perburbation (SO), singlet-triplet (S-T) conversion      49—50
Spin-orbit perburbation (SO), singlet-triplet (S-T) conversion, coupling operators      57—58
Spin-orbit perburbation (SO), singlet-triplet (S-T) conversion, magnet field interaction      71—78
Spin-orbit perburbation (SO), singlet-triplet (S-T) conversion, triplet-state structure      54—56
Spin-orbit perburbation (SO), singlet-triplet (S-T) coupling, first-order perturbation matrix elements      60—61
Spin-spin interaction, triplet states      48—49
Srinivasan, R.      49(70) 51(70) 95
Stamp, P.C.E.      155(135) 160(143) 165(143 159—160) 166(143) 168(143) 176(172) 189—190
Stannard, P.R.      46—47(23) 62(23) 64(23) 93
Stanton, J.F.      90(154) 97
Stanton, R.E.      15(60) 44
Stawiaasz, K.      104(41) 161(41) 186
Steepest descent method, time-dependent transition probability, vibrational energy relaxation      218—223
Stefanov, B.B.      26(66) 44
Stein, K.      104(41) 161(41) 186
Stephenson, J.C.      192(2) 267
Steubing, W.      46(1) 93
Stevens, C.G.      54—55(97) 95
Stewart, J.R.      26(66) 44
Stole, R.H.      194(15) 202(15) 268
Stoner — Wohlfarth uniform rotation model, magnetic quantum tunneling, quantization techniques, single-domain nanoparticles      181—183
Stoner — Wohlfarth uniform rotation model, zero Kelvin magnetization reversal, nanometer-sized particles and clusters      115—129
Stoner — Wohlfarth uniform rotation model, zero Kelvin magnetization reversal, nanometer-sized particles and clusters, cubic anisotropy      126—129
Stoner — Wohlfarth uniform rotation model, zero Kelvin magnetization reversal, nanometer-sized particles and clusters, experimental data      120—126
Stoner, C.      115(52) 187
Stratt, R.M.      198(45—47) 202(61) 203(66—68) 269
Stuart, S.J.      267(109) 270
Stuchebrukhov, A.A.      5(25—34) 6(36—38) 7(37 43) 8(36 38 45—50) 9(25—29 34 38 49—51) 10(25—34 36—37) 11(26 34 49—50) 13(28) 17(64) 24(26 50) 26(31) 31(31 45) 34(45—47) 36(50) 38(33 50) 39(33 45—46) 40(45—46) 42—44
Stueckelberg, E.C.G.      154(132) 189
Suhl, H.      133(81) 187
Sulpice, A.      113(48) 133—134(79) 147(79) 186—187
Sumitani, M.      46(12) 93
Superconducting quantum interference device (SQUID)      see "Micro-SQUID mangetometry"
Superexchange mechanisms, long-distance electron tunneling      2—4
Suran, G.      103—104(22) 120(22) 134(22) 179(22) 185
Surface hopping approximation, vibrational energy relaxation, theoretical background      195—196
Survival probability estimation, $CN^{-}$ ions in aqueous solution, relaxation      243—247
Sutin, N.      2—4(8) 26(8) 32(8) 40(8) 41
Suzuki, T.      89(142) 97
Switching measurements, magnetic quantum tunneling, single-domain nanoparticles and wires, very low temperatures      179—181
Switching measurements, micro-SQUID magnetometry, blind mode method, three-dimensional switching      111—113
Switching measurements, micro-SQUID magnetometry, cold mode techniques      109—111
Switching measurements, nonuniform zero Kelvin magnetization reversal, nucleation and annihilation of domain walls      134—135
Switching measurements, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model      140—141
Switching measurements, zero Kelvin magnetization reversal, Stoner — Wohlfarth uniform rotation model      121—126
Sykes, G.      2—3(4) 7(4) 33(4) 41
Szabo, A.      13(58) 15(58) 19(58) 44
Szarka, A.Z.      203(62) 269
Takahashi, K.      49(80) 51(80) 95
Takemura, T.      46(15) 47(15—16 47—50) 48(16 47 49—50) 90(15—16 47—50) 92(16 50 176—179) 93—94 98
Tamai, N.      53(95) 95
Tartarskii, V.      255(107) 270
Taskin, T.      103(23) 179(23) 185
Tayler, P.R.      90(148) 97
Taylor expansion, time-dependent transition probability, vibrational energy relaxation      218—223
Tejada, J.      150(114) 154(114) 176(173) 188 190
Telegraph noise measurements, magnetic quantum tunneling, single-domain nanoparticles and wires, very low temperatures      179—181
Telegraph noise measurements, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model      141—142
Temperature effects, Landau — Zener tunneling, environmental decoherence      171—175
Temperature effects, magnetic quantum tunneling, single-domain wires, very low temperatures      179-181
Temperature effects, magnetization reversal, nanometer-sized particles and clusters      135—149
Temperature effects, magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model      136—138
Temperature effects, magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model, cobalt cluster applications      144—146
Temperature effects, magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model, deviations from      147—149
Temperature effects, magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model, nanoparticle applications      142—144
Temperature effects, magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model, nickel wire applications      146—147
Temperature effects, magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model, switching field measurements      140—141
Temperature effects, magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model, telegraph noise measurements      141-142
Temperature effects, magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model, waiting time measurements      138—140
Temperature effects, vibrational energy relaxation, one-harmonic- oscillator bath model      257—260
Terashima, T.      196(43) 233(43) 238(43) 268
Terazima, M.      91(172) 97
Thiavilie's calculation, zero Kelvin magnetization reversal, Stoner — Wohlfarth uniform rotation model      118—120
Thiaville, A.      104(38) 105(46) 109(38) 111(38) 114(46) 115(54—55) 117(54—55) 119(54) 121(38) 122(54) 126(54—55) 138(55) 142(38) 186—187
Thirion, C.      104(39) 109(39) 121(39) 142(39) 186
Thomas, L.      103—104(22) 120(22 59) 133(79) 134(22 59 79) 142(59) 147(59 79 102) 148(59) 150(115) 154(115) 179(22) 185 187—189
Thorwart, M.      155(137) 189
Three-dimensional switching measurements, micro-SQUID magnetometry, blind mode techniques      111—113
Three-dimensional switching measurements, zero Kelvin magnetization reversal, Stoner — Wohlfarth uniform rotation model      120—126
Tildesley, D.J.      193(10 12) 194(10) 268
Time-dependent transition probability, $CN^{-}$ ions in aqueous solution, relaxation      243—247
Time-dependent transition probability, vibrational energy relaxation, mean field approximation      229—232
Time-dependent transition probability, vibrational energy relaxation, mixed quantum-classical molecular dynamics      232—237
Time-dependent transition probability, vibrational energy relaxation, perturbative influence functional, nonlinear couplings      217—223
Time-resolved pump-probe spectroscopy, vibrational energy relaxation      192—193
Tinti, D.S.      82(121) 96
Tokmakoff, A.      206(81—82) 269—270
Tonomura, A.      103(13) 185
Total atomic currents, one-electron longdistance tunneling, interatomic currents and paths      10—12
Townes, C.H.      55(111) 96
Trajectory calculations, vibrational energy relaxation, mixed quantum-classical molecular dynamics      232—237
Tramer, A.      46(3 20—21) 47(3 20—21 24 34 35) 49(77) 51—52(77) 91(165) 93—95 97
Trans configuration, oxalylfluoride, magnetic field influence on excited-state dynamics      82
Transition metal complexes, tunneling mechanisms      24—27
Transition state, tunneling calculations      33—34
Transverse field dependence, Landau — Zener tunneling, environmental decoherence      175
Transverse field dependence, magnetic quantum tunneling, splitting oscillations      161—165
Trapezoidal numerical integration, vibrational energy relaxation, time-dependent transition probability      222—223
Traverse, A.      121(61) 123(61) 187
Treilleux, M.      121(60) 187
Treves, D.      129(66) 131(66) 187
Trie, C.      47(30) 49(77 87) 51—52(77 87) 91(165) 94—95 97
Triechel, M.      203(62) 269
Triplet-state structure, singlet-triplet (S-T) conversion mechanism      53—56
Triplet-state structure, singlet-triplet (S-T) conversion mechanism, wave functions in magnetic field      78—82
Tronc, E.      103(8) 138(8) 141(8) 185
Trucks, G.W.      26(66) 44
Tsuchiya, S.      88(136) 89(146) 96—97
Tuaillon, J.      104(34) 120(60) 186—187
Tucker, S.C.      203(63) 269
Tuckerman, M.      194(16) 202(16) 268
Tully, J.C.      195(32 37—39) 196(32) 201(52) 268—269
Tunnel splitting oscillations, magnetic quantum tunneling, iron $(Fe_{8})$ molecular clusters      160—165
Tunnel splitting oscillations, magnetic quantum tunneling, numerical diagonalization      163—165
Tunnel splitting oscillations, magnetic quantum tunneling, semiclassical descriptions      163
Tunneling currents, calculations, Gaussian-type functions (GFT) vs. real-space (grid) calculations      37—38
Tunneling currents, calculations, new analytical techniques      37
Tunneling currents, calculations, protein dynamic effects      39—40
Tunneling currents, calculations, Ruthenium-modified copper protein electron transfer      21—24
Tunneling currents, long-distance electron tunneling, theoretical background      5—6
Tunneling matrix element      see also "Matrix elements"
Tunneling matrix element, many-electron tunneling, Hartree — Fock approximation      15—18
Tunneling matrix element, many-electron tunneling, interatomic currents and paths      21
Tunneling matrix element, many-electron tunneling, spatial distribution of current density      13—15
Tunneling matrix element, one-electron long-distance tunneling, interatomic currents and paths      10—12
Tunneling matrix element, one-electron long-distance tunneling, very large systems      6—8
Tupitsyn, I.      160(142) 189
Turk, B.      147(104) 188
Twigg, M.V.      147(104) 188
Two-level fluctuations (TLF), magnetic quantum tunneling, single-domain nanoparticles and wires, very low temperatures      179—181
Tyrrell, J.      82(125) 96
Tyulin, V.I.      82(119) 96
Uher, C.      126(62) 187
Ungar, L.W.      39(79) 44
Uniform rotation (Stoner — Wohlfarth model), zero Kelvin magnetization reversal, nanometer-sized particles and clusters      115—129
Uniform rotation (Stoner — Wohlfarth model), zero Kelvin magnetization reversal, nanometer-sized particles and clusters, cubic anisotropy      126—129
Uniform rotation (Stoner — Wohlfarth model), zero Kelvin magnetization reversal, nanometer-sized particles and clusters, experimental data      120—126
Uniform rotation (Stoner — Wohlfarth model), zero Kelvin magnetization reversal, nanometer-sized particles and clusters, generalization      116—119
Vaille, J.L.      121(60) 187
Valentine, R.W.      31(73) 44
Van Craen, J.C.      88(135) 96
van den Berg, H.A.M.      133 134(80) 187
van der Meer, B.J.      91(162—164) 97
Van Uitert, L.G.      49(71) 51(71) 95
Van Vleck theory, singlet-triplet (S-T) conversion mechanism      49—50
Van Vleck, J.L.      49(90—92) 54—55(90—92) 58(90—92) 95
Vaures, A.      104(32) 186
Vavrn, W.      126(62) 187
Veillet, P.      103(17) 185
Velev, P.      206(87) 270
Velocity operator, many-electron tunneling, interatomic currents and paths      20—21
Vernon, F.L.      165(158) 190 195(26) 207—208(26) 211(26) 217(26) 268
Vibrational energy relaxation, $CN^{-}$ in aqueous solution      237—247
Vibrational energy relaxation, $CN^{-}$ in aqueous solution, relaxation mechanism      241—247
Vibrational energy relaxation, $CN^{-}$ in aqueous solution, relaxation mechanism, bath mode analysis      247
Vibrational energy relaxation, $CN^{-}$ in aqueous solution, relaxation mechanism, spectral densities      242—243
Vibrational energy relaxation, $CN^{-}$ in aqueous solution, relaxation mechanism, state densities      241—242
Vibrational energy relaxation, $CN^{-}$ in aqueous solution, relaxation mechanism, survival probabilities      243—247
Vibrational energy relaxation, $CN^{-}$ in aqueous solution, relaxation time      238—241
Vibrational energy relaxation, classical Langevin equation      201—203
Vibrational energy relaxation, classical molecular dynamics      200—201
Vibrational energy relaxation, Fermi's golden rule, classical force autocorrelation function      203—206
Vibrational energy relaxation, Hamiltonian parameters      197—200
Vibrational energy relaxation, mixed quantum-classical molecular dynamics      228—237
Vibrational energy relaxation, mixed quantum-classical molecular dynamics, applications      232—237
Vibrational energy relaxation, mixed quantum-classical molecular dynamics, mean field approximation      229—232
Vibrational energy relaxation, path integral approach      206—227
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå