|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 118 |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Interatomic tunneling currents and paths, many-electron tunneling 18—21
Interatomic tunneling currents and paths, many-electron tunneling, Mulliken population operators 18—20
Interatomic tunneling currents and paths, many-electron tunneling, population dynamics 20—21
Interatomic tunneling currents and paths, one-electron long-distance tunneling 9—12
Intermolecular dipole interaction, environmental decoherence effects, molecular clusters 168—170
Intramolecular interaction , singlet-triplet (S-T) conversion mechanism 49—50
Iron molecular clusters , environmental decoherence effects 165—176
Iron molecular clusters , environmental decoherence effects, hole digging analysis of dipolar distribution and hyperfine coupling 166—168
Iron molecular clusters , environmental decoherence effects, hyperfine interaction 170—171
Iron molecular clusters , environmental decoherence effects, intermolecular dipole interaction 168-170
Iron molecular clusters , environmental decoherence effects, Landau — Zener tunneling probability 171—175
Iron molecular clusters , environmental decoherence effects, Prokof'ev — Stamp theory 165—166
Iron molecular clusters , magnetic quantum tunneling, anisotropy 150—154
Iron molecular clusters , magnetic quantum tunneling, Landau — Zener tunneling 154—160
Iron molecular clusters , magnetic quantum tunneling, quantization techniques, single-domain nanoparticles 181—183
Iron molecular clusters , magnetic quantum tunneling, splitting oscillations 160—165
Ishchenko, V.N. 46(13) 47—49(37—41) 62(39) 77(39—41) 82(41) 83—84(39—41 128) 85(37—38) 86—87(37—41) 88(39 41) 91—92(41) 93—94 96
Ishii, Y. 131(71) 187
Ishimoto, H. 150(124) 176(124) 189
Ito, M. 88(139) 89(141) 97
J-coupling scheme, singlet-triplet (S-T) conversion mechanism, triplet-state structure 55—56
J-dependence, oxalylfluoride, magnetic field influence on excited-state dynamics 84
Jacobs, I.S. 147(103) 188
Jahnes, C. 104(30) 186
Jamet, M. 104(39) 109(39) 121(39 61) 123(61) 142(39) 186—187
Jamet, R. 103(17) 185
Jang, S. 195—196(31) 227(31) 238(31) 268
Jaso, M. 104(41) 161(41) 186
Jensen, R. 121(60) 187
Jibril, I. 151—152(125) 189
Johns, J.W.C. 54—55(105) 96
Johnson, B.G. 26(66) 44
Johnston, R. 49(73) 51(73) 95
Jonkman, H.Th. 91(162—164 175) 97—98
Jordan, K.D. 11(55) 44
Jorgensen, W.L. 239(102) 270
Jortner, J. 2—3(10) 41 49(55—57 59 75) 51(55—57 59 75) 52(75) 82(118) 91(166 172) 94—97 206(78) 218(78) 269
Josephson effect, micro-SQUID magnetometry configuration 104—105
Jost, R. 46(3 20—21) 47(3 20—21 24 32 34—36) 88(137) 93—94 97
Judd, B.R. 55(115) 96
Kaiser, W. 192(1 3 6) 267
Kalmykov, Yu.P. 136(89—90) 137(89—91) 188
Karplus, M. 6(39) 43
Karrlein, R. 206(85) 270
Kato, S. 205(74) 269
Katsnelson, M.I. 165(157) 176(171) 190
Katz, D.J. 7(43) 43
Kececioglu, E. 163(150) 190
Keith, T.A. 26(66) 44
Keldish, L.V. 213(93) 270
Kelly, D. 104(25 31) 185—186
Kemp, M. 3(16) 6(42) 42—43
Kenkre, V.M. 206(81) 269
Kennedy, E.C. 136(90) 137(90—91) 188
Kent, A.D. 104(26) 150(120) 151(26) 154(120) 173(120 167) 186 189—190
Keszei, E. 233(97) 270
Ketchen, M. 104(41) 161(41) 186
Keyes, T. 206(82) 270
Khmelinskii, I.V. 46(13) 47—49(39—41) 53(93) 62(39) 77(39—41) 82(41) 83—84(39—41 128) 86—87(39—41) 88(39 41) 91—92(41) 93—96
Kim, G.-H. 177—178(177) 190
Kim, H. 15(60) 44
Kim, J. 5(34) 9—11(34) 17(64) 34(34) 43—44
Kimura, Y. 203(65) 269
King, G.W. 82(122—123) 88(130 132) 96
King, H. 15(60) 44
Kinsey, J.L. 55(110) 88(138) 96—97
Klein, M.L. 205(73) 238(100) 239(73 102) 269—270
Kleinsasser, A.W. 104(41) 161(41) 186
Klik, I. 137(92—93) 188
Kliner, D.A.V. 201(55) 269
Knowles, J.E. 103(12) 185
Kochubei, S.A. 46(13) 47—49(37—41) 62(39) 77(39—41) 82(41) 83—84(39—41 128) 85(37—38) 86—87(37—41) 88(39 41) 91—92(41) 93— 96
Kodama, R.H. 147(105—106) 188
Kohl, C. 101(5) 185
Kohn — Sham equations, tunneling current calculations 39
Kommandeur, J. 91(161—164 175) 97—98
Kono, H. 49(82) 51(82) 95
Kubo O. 104(37) 109(37) 111(37) 121(37) 142(37) 144(37) 180(37) 186
Kuhn, I.H. 49(84) 51(84) 95
Kuhn, L.T. 104(27) 186
Kuki, A. 6(40) 43
Kurkijaervi, J. 141(96) 188
Kurnikov, I. 8(44) 11(44) 39(80) 43—44
Kurnikova, M.G. 39(80) 44
Kuttner, H.G. 47(25 31) 94
Kuznetsov, A.M. 2—3(9) 40(9) 41
Ladanyi, B.M. 198(45 47) 202(61) 269
Lahmani, F. 49(77) 51—52(77) 91(165) 95 97
Lahut, J.A. 147(103) 188
Lambert, W.R. 47(42) 90(42) 94
Lamelas, F.J. 126(62) 187
Landau — Zener tunneling, environmental decoherence effects, intermolecular dipole interaction 169-170
Landau — Zener tunneling, environmental decoherence effects, temperature dependence 171—175
Landau — Zener tunneling, iron molecular clusters 155—160
Landau — Zener tunneling, iron molecular clusters 154—160
Landau — Zener tunneling, tunnel splitting oscillations 160—165
Landau, L. 154(130) 189
Langen, R. 2—4(6) 26(6) 33(6) 41
Langevin equation, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model 135—136
Langevin equation, vibrational energy relaxation 193—194
Langevin equation, vibrational energy relaxation, classical approaches 201—203
Langevin equation, vibrational energy relaxation, mixed quantum-classical molecular dynamics 234—237
Langhof, S.R. 90(148) 97
Laplace transformation, vibrational energy relaxation, Langevin equation 202—203
Larsen, R.E. 203(66 68) 269
Larsson, S. 4(21) 36(21) 42
Laser-induced fluorescence (LIF) spectra, oxalylfluoride, magnetic field influence on excited-state dynamics 82—83
Laubereau, A. 192(1) 267
Laviolette, R.A. 237(98) 241(98) 270
Lavrik, N.L. 46(5 7) 47(5) 93
Ledermann, M. 103(19) 133(78) 142(19) 185 187
Lee, C.H. 126(62) 187
Lee, S.-F. 104(29 32) 186
Lee, S.-Y. 163(153) 190
Lee, Y.T. 90(149) 97
Leggett, A.J. 149(107) 188 207(89) 211(89) 218(89) 220(89) 225(89) 270
Leighton, R.B. 163(147) 190
Lelievte-Berna, E. 151—152(109) 188
Lennard-Jones potential, vibrational energy relaxation Hamiltonians 199—200
Lennard-Jones potential, vibrational energy relaxation, influence functional theory 208—209
Lerme, J. 121(60) 187
Leuenberger, M.N. 155(138) 171(138) 173(138) 176(174) 189—190
Level anticrossing mechanism (LAM), singlet-triplet (S-T) conversion mechanism 52—53
Level anticrossing mechanism (LAM), theoretical background 46—49
Levine, R.D. 82(118) 96
Levinson, L.M. 147(103) 188
Levy, D.H. 46(2) 93
Levy, R.M. 205(69) 269
Liang, C.X. 33(74) 44
Liang, j.-q. 163(152) 190
Lim, E.C. 91(167—168) 92(168) 97
Lim, E.S. 49(69) 51(69) 91(172 174) 95 97
Lim, M. 192(9) 196(9) 238(9) 245(9) 267
Lin, S.H. 49(82) 51(82) 82(117) 91(170) 95—97 206(77) 218(77) 269
Lindelof, P.E. 104(27) 186
Lionti, F. 150(115 123) 154(115) 176(123) 189
Lipinski, M. 104(28) 186
Lippmann — Schwinger equation, vibrational energy relaxation, mean field approximation 231—232
Liu, D.S. 54—55(102) 96
Liverman, M.G. 82(120) 96
Livingstone, J.D. 135(85) 141(85) 188
Lobaugh, J. 239(103) 270
Loiseau, A. 104(36) 109(36) 111(36) 121(36) 142(36) 144(36) 180(36) 186
Lok, J.G.S. 104(27) 186
Lombardi, M. 46(3 20—21) 47(3 20—21 24 32 34—36) 49(89) 51(89) 88(137) 93—95 97
Long-distance electron tunneling, analytic techniques, future development 37
Long-distance electron tunneling, density functional theory (DFT) calculations 38—39
Long-distance electron tunneling, Gaussian basis vs. real-space (grid) calculations 37—38
Long-distance electron tunneling, many-electron formulation, current density operator 12—13
Long-distance electron tunneling, many-electron formulation, Hartree — Fock approximation 15—18
| Long-distance electron tunneling, many-electron formulation, interatomic tunneling currents 18—21
Long-distance electron tunneling, many-electron formulation, spatial distribution of current density 13—15
Long-distance electron tunneling, one-electron theory, interatomic currents and paths 9—12
Long-distance electron tunneling, one-electron theory, protein pruning 8—9
Long-distance electron tunneling, one-electron theory, tunneling matrix element, very large systems 6—8
Long-distance electron tunneling, polarization cloud dynamics 36—37
Long-distance electron tunneling, protein dynamic effects 39—40
Long-distance electron tunneling, theoretical background 2—6
Long-distance electron tunneling, tunneling current calculations, exchange effects 34—36
Long-distance electron tunneling, tunneling current calculations, pruned His-125 molecule 24—27
Long-distance electron tunneling, tunneling current calculations, quantized vortices in tunneling flow 27—32
Long-distance electron tunneling, tunneling current calculations, Ruthenium-modified copper protein electron transfer 21—24
Long-distance electron tunneling, tunneling current calculations, transfer matrix element 32—33
Long-distance electron tunneling, tunneling current calculations, transition state analysis 33—34
Loss, D. 155(138) 161(145) 171(138) 173(138) 176(174) 189—190
Louisell, W.H. 225(95) 270
Low-field limit, singlet-triplet (S-T) conversion, Zeeman interaction operator 63—65
Low-temperature behavior, vibrational energy relaxation, one-harmonic-oscillator bath model 258—260
Lowther, J.E. 206(75) 269
Lu, L. 103(20) 185
Lu, Y. 104(30) 186
Maan, J.C. 104(27) 186
MacElroy, R.D. 237(98) 241(98) 270
Madura, J.D. 239(102) 270
Magnetic fields, excited-state dynamics, acetylene 88—90
Magnetic fields, excited-state dynamics, anisotropic spin-spin constants 92—93
Magnetic fields, excited-state dynamics, diazines 90—92
Magnetic fields, excited-state dynamics, oxalylfluoride 82—88
Magnetic fields, perturbation effects, theoretical background 46—49
Magnetic fields, singlet-triplet (S-T) conversion, interaction schemes and 68—78
Magnetic fields, singlet-triplet (S-T) conversion, triplet-state wave functions 78—82
Magnetic quantum tunneling see "Quantum tunneling"
Magnetic quenching (MQ), acetylene fluorescence 89—90
Magnetization reversal, nanometer-sized particles and clusters, micro-SQUID mangetometry 104—114
Magnetization reversal, nanometer-sized particles and clusters, micro-SQUID mangetometry, array schematics 113
Magnetization reversal, nanometer-sized particles and clusters, micro-SQUID mangetometry, blind mode three-dimensional switching field measurements 111—113
Magnetization reversal, nanometer-sized particles and clusters, micro-SQUID mangetometry, cold mode magnetization switching measurements 109—111
Magnetization reversal, nanometer-sized particles and clusters, micro-SQUID mangetometry, critical current magnetization measurements 105—109
Magnetization reversal, nanometer-sized particles and clusters, micro-SQUID mangetometry, fabrication techniques 105
Magnetization reversal, nanometer-sized particles and clusters, micro-SQUID mangetometry, future applications 114
Magnetization reversal, nanometer-sized particles and clusters, micro-SQUID mangetometry, hysteresis loop measurement feedback 109
Magnetization reversal, nanometer-sized particles and clusters, micro-SQUID mangetometry, scanning microscopy 114
Magnetization reversal, nanometer-sized particles and clusters, micro-SQUID mangetometry, SQUID configuration selection 104-105
Magnetization reversal, nanometer-sized particles and clusters, quantum tunneling 149—183
Magnetization reversal, nanometer-sized particles and clusters, quantum tunneling, environmental decoherence effects 165—176
Magnetization reversal, nanometer-sized particles and clusters, quantum tunneling, individual single-domain particles 176—183
Magnetization reversal, nanometer-sized particles and clusters, quantum tunneling, molecular clusters 150—165
Magnetization reversal, nanometer-sized particles and clusters, research background 100—102
Magnetization reversal, nanometer-sized particles and clusters, single-particle measurement techniques 102—114
Magnetization reversal, nanometer-sized particles and clusters, temperature effects 135—149
Magnetization reversal, nanometer-sized particles and clusters, temperature effects, Neel — Brown model 136—138
Magnetization reversal, nanometer-sized particles and clusters, zero Kelvin reversal 114—135
Magnetization reversal, nanometer-sized particles and clusters, zero Kelvin reversal, nonuniform magnetization reversal 129—135
Magnetization reversal, nanometer-sized particles and clusters, zero Kelvin reversal, uniform rotation (Stoner — Wohlfarth model) 115-129
Magnetocrystalline anisotropy (MC), zero Kelvin magnetization reversal, Stoner — Wohlfarth uniform rotation model 118—120
Magnetoelastic (ME) anisotropy, zero Kelvin magnetization reversal, Stoner — Wohlfarth uniform rotation model 118—120
Mailly, D. 103(22) 104(22 34—39) 105—106(43—44) 109(36—39) 111(35—39) 113(48) 114(43—44 50—51) 120(22 59) 121(36—39) 128(65) 131—132(35 74) 133(79) 134(22 59 79) 142(36—39 59) 144(36—37) 146(35 74) 147(59 74 79) 148(59 74) 151(126) 155(129) 159(129) 168(129) 173(126) 179(22 35) 180(36—37) 185—187 189
Makarov, V.I. 46(7 13 19) 47—48(19 37—41) 49(37—41) 53(93—94 96) 62(39) 67(19) 77(19 39—41) 79(19) 82(19 41) 83(39—41 128) 84(19 39—41 128) 85(37—38 40) 86(37—41) 87(19 37—41) 88(39 41) 89(143 145) 90(143) 91—92(41) 93—97
Manganese molecular clusters, environmental decoherence effects, hyperfine couplings 170—171
Manganese molecular clusters, magnetic quantum tunneling 150—151
Manganese molecular clusters, magnetic quantum tunneling, anisotropy measurements 1564
Mangin, S. 113(48) 186
Maniero, A.L. 150(124) 176(124) 189
Manny, M. 104(41) 161(41) 186
Many-electron formulation, long-distance election tunneling, current density operator 12—13
Many-electron formulation, long-distance election tunneling, Hartree — Fock approximation 15—18
Many-electron formulation, long-distance election tunneling, interatomic tunneling currents 18—21
Many-electron formulation, long-distance election tunneling, spatial distribution of current density 13—15
Many-electron formulation, Ruthenium-modified copper protein, His/Met residue tunneling transition 26—27
Many-electron formulation, vibrational energy relaxation, theoretical background 196—197
Mao, Y. 3(16) 42
Marchal, G. 113(48) 186
Marcus — Levich — Dogonadze expression, protein dynamics, electron-phonon coupling 40
Marcus, R.A. 2—4(8) 6(41) 8(41 48) 26(8) 32(8) 40(8) 41 43
Marley, A. 104(30) 186
Maroncelli, M. 200(51) 269
Martet, C. 121(60) 187
Martin, R.L. 26(66) 44
Martinis, J.M. 104(40) 186
Matrix elements see also "Tunneling matrix element"
Matrix elements, singlet-triplet (S-T) conversion, first-order perturbations 58—61
Matrix elements, singlet-triplet (S-T) conversion, magnet field interaction 68—78
Matrix elements, singlet-triplet (S-T) conversion, second-order perturbations 61—62
Matrix elements, singlet-triplet (S-T) conversion, triplet-state wave functions, magnetic field 78—82
Matrix elements, singlet-triplet (S-T) conversion, Zeeman perturbation 62—68
Matrix elements, tunneling flow calculations 32—33
Matsuda, T. 103(13) 185
Matsumoto, Y. 46(14) 47(14 43—45) 90(14 43—45) 91(43—45 169) 93—94 97
Matsuzaki, A. 46(6 22) 47(22 27) 62(22) 64(22) 93—94
Matsuzaki, M. 46(4) 47(4 26) 93—94
Maude, D.K. 103(23) 179(23) 185
Maurice, J.L. 104(32) 186
Maxwell equations, tunneling flow vortices 31—32
McConnell, H.M. 4(20) 36(20) 42
McCormick, S. 39(76) 44
McCullough, E.A.Jr. 26(69) 44
McDonald, I.R. 194(14) 205(73) 238(100) 239(73) 268—270
McDonald, J.R. 82(126) 96
McFadyen, I. 103(16) 185
McHugh, A.J. 47(28) 94
McLaughlin, I. 49(59) 51(59) 94
McNiff, E.J. 147(105) 188
McVitie, S. 103(15) 185
Mean field approximation, ions in aqueous solution, relaxation times 240—241
Mean field approximation, vibrational energy relaxation, mixed quantum-classical molecular dynamics 229—232
Mean field approximation, vibrational energy relaxation, theoretical background 196
Medvedev, D. 8(50) 9(50—951) 11(50) 24(50) 36(50) 38(50) 43
Medvedev, E.S. 8(45—47) 31(45) 34(45—47) 39—40(45—46) 43
Meerts, W.L. 90(151) 97
Megy, R. 103(17) 185
Meier, J. 104(35) 1 131—132(35 74) 146(35 74) 147—148(74) 179(35) 186—187
Meiweis-Broer, K.H. 103(20—21) 185
Melinon, P. 104(39) 109(39) 121(39 60—61) 123(61) 142(39) 186—187
Merer, A J. 54—55(98) 95
Mesoscopic effects, quantum tunneling magnetization reversal 149—150
Met residue, Ruthenium-modified copper protein, tunneling transition 24—27
Metiu, H. 202(59) 269
Metz, F. 49(84) 51(84) 95
Meyer, P. 103(17) 185
Michel, C. 46(3 20—21) 47(3 20—21 24 30 34 36) 93—94
Michel-Beyerle, M.E. 4(17) 42
Micro-SQUID magnetometry, magnetic quantum tunneling, iron molecular clusters 151—152
Micro-SQUID magnetometry, magnetization reversal, nanometer-sized particles and clusters 104—114
Micro-SQUID magnetometry, magnetization reversal, nanometer-sized particles and clusters, array schematics 113
Micro-SQUID magnetometry, magnetization reversal, nanometer-sized particles and clusters, blind mode three-dimensional switching field measurements 111—113
Micro-SQUID magnetometry, magnetization reversal, nanometer-sized particles and clusters, cold mode magnetization switching measurements 109—111
Micro-SQUID magnetometry, magnetization reversal, nanometer-sized particles and clusters, critical current magnetization measurements 105—109
Micro-SQUID magnetometry, magnetization reversal, nanometer-sized particles and clusters, fabrication techniques 105
Micro-SQUID magnetometry, magnetization reversal, nanometer-sized particles and clusters, future applications 114
Micro-SQUID magnetometry, magnetization reversal, nanometer-sized particles and clusters, hysteresis loop measurement feedback 109
Micro-SQUID magnetometry, magnetization reversal, nanometer-sized particles and clusters, scanning microscopy 114
Micro-SQUID magnetometry, magnetization reversal, nanometer-sized particles and clusters, SQUID configuration selection 104—105
Micro-SQUID magnetometry, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model 142—144
Miguel, M.C. 177(176) 190
Mihama, K. 103(13) 185
Mikami, T. 238(99) 270
Miller, A. 176(169) 190
Mixed quantum-classical molecular dynamics, ions in aqueous solution, relaxation times 240—241
Mixed quantum-classical molecular dynamics, vibrational energy relaxation, applications 232—237
Mixed quantum-classical molecular dynamics, vibrational energy relaxation, direct simulation 228—237
Mixed quantum-classical molecular dynamics, vibrational energy relaxation, future research applications 266—267
Mixed quantum-classical molecular dynamics, vibrational energy relaxation, mean field approximation 229—232
Mixed quantum-classical molecular dynamics, vibrational energy relaxation, theoretical background 195—196
Miyashita, S. 155(133—134) 189
Molecular clusters, environmental decoherence effects 165-176
Molecular clusters, environmental decoherence effects, hole digging analysis, dipolar distribution and hyperfine coupling 166—168
Molecular clusters, environmental decoherence effects, hyperfine interaction 170—171
Molecular clusters, environmental decoherence effects, intermolecular dipole interaction 168-170
Molecular clusters, environmental decoherence effects, Landau — Zener tunneling probability 171—175
Molecular clusters, environmental decoherence effects, Prokof'ev — Stamp theory 165—166
|
|
|
Ðåêëàìà |
|
|
|