Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 118
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 118



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in Chemical Physics. Volume 118

Àâòîðû: Prigogine I. (ed.), Rice S.A. (ed.)

Àííîòàöèÿ:

This is the only series of volumes available that represents the cutting edge of research relative to advances in chemical physics. Provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. Continues to report recent advances with significant, up-to-date chapters. Contributing authors are internationally recognized researchers.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 304

Äîáàâëåíà â êàòàëîã: 08.12.2013

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Interatomic tunneling currents and paths, many-electron tunneling      18—21
Interatomic tunneling currents and paths, many-electron tunneling, Mulliken population operators      18—20
Interatomic tunneling currents and paths, many-electron tunneling, population dynamics      20—21
Interatomic tunneling currents and paths, one-electron long-distance tunneling      9—12
Intermolecular dipole interaction, environmental decoherence effects, molecular clusters      168—170
Intramolecular interaction $V_{ST}$, singlet-triplet (S-T) conversion mechanism      49—50
Iron molecular clusters $(Fe_{8})$, environmental decoherence effects      165—176
Iron molecular clusters $(Fe_{8})$, environmental decoherence effects, hole digging analysis of dipolar distribution and hyperfine coupling      166—168
Iron molecular clusters $(Fe_{8})$, environmental decoherence effects, hyperfine interaction      170—171
Iron molecular clusters $(Fe_{8})$, environmental decoherence effects, intermolecular dipole interaction      168-170
Iron molecular clusters $(Fe_{8})$, environmental decoherence effects, Landau — Zener tunneling probability      171—175
Iron molecular clusters $(Fe_{8})$, environmental decoherence effects, Prokof'ev — Stamp theory      165—166
Iron molecular clusters $(Fe_{8})$, magnetic quantum tunneling, anisotropy      150—154
Iron molecular clusters $(Fe_{8})$, magnetic quantum tunneling, Landau — Zener tunneling      154—160
Iron molecular clusters $(Fe_{8})$, magnetic quantum tunneling, quantization techniques, single-domain nanoparticles      181—183
Iron molecular clusters $(Fe_{8})$, magnetic quantum tunneling, splitting oscillations      160—165
Ishchenko, V.N.      46(13) 47—49(37—41) 62(39) 77(39—41) 82(41) 83—84(39—41 128) 85(37—38) 86—87(37—41) 88(39 41) 91—92(41) 93—94 96
Ishii, Y.      131(71) 187
Ishimoto, H.      150(124) 176(124) 189
Ito, M.      88(139) 89(141) 97
J-coupling scheme, singlet-triplet (S-T) conversion mechanism, triplet-state structure      55—56
J-dependence, oxalylfluoride, magnetic field influence on excited-state dynamics      84
Jacobs, I.S.      147(103) 188
Jahnes, C.      104(30) 186
Jamet, M.      104(39) 109(39) 121(39 61) 123(61) 142(39) 186—187
Jamet, R.      103(17) 185
Jang, S.      195—196(31) 227(31) 238(31) 268
Jaso, M.      104(41) 161(41) 186
Jensen, R.      121(60) 187
Jibril, I.      151—152(125) 189
Johns, J.W.C.      54—55(105) 96
Johnson, B.G.      26(66) 44
Johnston, R.      49(73) 51(73) 95
Jonkman, H.Th.      91(162—164 175) 97—98
Jordan, K.D.      11(55) 44
Jorgensen, W.L.      239(102) 270
Jortner, J.      2—3(10) 41 49(55—57 59 75) 51(55—57 59 75) 52(75) 82(118) 91(166 172) 94—97 206(78) 218(78) 269
Josephson effect, micro-SQUID magnetometry configuration      104—105
Jost, R.      46(3 20—21) 47(3 20—21 24 32 34—36) 88(137) 93—94 97
Judd, B.R.      55(115) 96
Kaiser, W.      192(1 3 6) 267
Kalmykov, Yu.P.      136(89—90) 137(89—91) 188
Karplus, M.      6(39) 43
Karrlein, R.      206(85) 270
Kato, S.      205(74) 269
Katsnelson, M.I.      165(157) 176(171) 190
Katz, D.J.      7(43) 43
Kececioglu, E.      163(150) 190
Keith, T.A.      26(66) 44
Keldish, L.V.      213(93) 270
Kelly, D.      104(25 31) 185—186
Kemp, M.      3(16) 6(42) 42—43
Kenkre, V.M.      206(81) 269
Kennedy, E.C.      136(90) 137(90—91) 188
Kent, A.D.      104(26) 150(120) 151(26) 154(120) 173(120 167) 186 189—190
Keszei, E.      233(97) 270
Ketchen, M.      104(41) 161(41) 186
Keyes, T.      206(82) 270
Khmelinskii, I.V.      46(13) 47—49(39—41) 53(93) 62(39) 77(39—41) 82(41) 83—84(39—41 128) 86—87(39—41) 88(39 41) 91—92(41) 93—96
Kim, G.-H.      177—178(177) 190
Kim, H.      15(60) 44
Kim, J.      5(34) 9—11(34) 17(64) 34(34) 43—44
Kimura, Y.      203(65) 269
King, G.W.      82(122—123) 88(130 132) 96
King, H.      15(60) 44
Kinsey, J.L.      55(110) 88(138) 96—97
Klein, M.L.      205(73) 238(100) 239(73 102) 269—270
Kleinsasser, A.W.      104(41) 161(41) 186
Klik, I.      137(92—93) 188
Kliner, D.A.V.      201(55) 269
Knowles, J.E.      103(12) 185
Kochubei, S.A.      46(13) 47—49(37—41) 62(39) 77(39—41) 82(41) 83—84(39—41 128) 85(37—38) 86—87(37—41) 88(39 41) 91—92(41) 93— 96
Kodama, R.H.      147(105—106) 188
Kohl, C.      101(5) 185
Kohn — Sham equations, tunneling current calculations      39
Kommandeur, J.      91(161—164 175) 97—98
Kono, H.      49(82) 51(82) 95
Kubo O.      104(37) 109(37) 111(37) 121(37) 142(37) 144(37) 180(37) 186
Kuhn, I.H.      49(84) 51(84) 95
Kuhn, L.T.      104(27) 186
Kuki, A.      6(40) 43
Kurkijaervi, J.      141(96) 188
Kurnikov, I.      8(44) 11(44) 39(80) 43—44
Kurnikova, M.G.      39(80) 44
Kuttner, H.G.      47(25 31) 94
Kuznetsov, A.M.      2—3(9) 40(9) 41
Ladanyi, B.M.      198(45 47) 202(61) 269
Lahmani, F.      49(77) 51—52(77) 91(165) 95 97
Lahut, J.A.      147(103) 188
Lambert, W.R.      47(42) 90(42) 94
Lamelas, F.J.      126(62) 187
Landau — Zener tunneling, environmental decoherence effects, intermolecular dipole interaction      169-170
Landau — Zener tunneling, environmental decoherence effects, temperature dependence      171—175
Landau — Zener tunneling, iron $(Fe_{8})$ molecular clusters      155—160
Landau — Zener tunneling, iron $Fe_{8}$ molecular clusters      154—160
Landau — Zener tunneling, tunnel splitting oscillations      160—165
Landau, L.      154(130) 189
Langen, R.      2—4(6) 26(6) 33(6) 41
Langevin equation, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model      135—136
Langevin equation, vibrational energy relaxation      193—194
Langevin equation, vibrational energy relaxation, classical approaches      201—203
Langevin equation, vibrational energy relaxation, mixed quantum-classical molecular dynamics      234—237
Langhof, S.R.      90(148) 97
Laplace transformation, vibrational energy relaxation, Langevin equation      202—203
Larsen, R.E.      203(66 68) 269
Larsson, S.      4(21) 36(21) 42
Laser-induced fluorescence (LIF) spectra, oxalylfluoride, magnetic field influence on excited-state dynamics      82—83
Laubereau, A.      192(1) 267
Laviolette, R.A.      237(98) 241(98) 270
Lavrik, N.L.      46(5 7) 47(5) 93
Ledermann, M.      103(19) 133(78) 142(19) 185 187
Lee, C.H.      126(62) 187
Lee, S.-F.      104(29 32) 186
Lee, S.-Y.      163(153) 190
Lee, Y.T.      90(149) 97
Leggett, A.J.      149(107) 188 207(89) 211(89) 218(89) 220(89) 225(89) 270
Leighton, R.B.      163(147) 190
Lelievte-Berna, E.      151—152(109) 188
Lennard-Jones potential, vibrational energy relaxation Hamiltonians      199—200
Lennard-Jones potential, vibrational energy relaxation, influence functional theory      208—209
Lerme, J.      121(60) 187
Leuenberger, M.N.      155(138) 171(138) 173(138) 176(174) 189—190
Level anticrossing mechanism (LAM), singlet-triplet (S-T) conversion mechanism      52—53
Level anticrossing mechanism (LAM), theoretical background      46—49
Levine, R.D.      82(118) 96
Levinson, L.M.      147(103) 188
Levy, D.H.      46(2) 93
Levy, R.M.      205(69) 269
Liang, C.X.      33(74) 44
Liang, j.-q.      163(152) 190
Lim, E.C.      91(167—168) 92(168) 97
Lim, E.S.      49(69) 51(69) 91(172 174) 95 97
Lim, M.      192(9) 196(9) 238(9) 245(9) 267
Lin, S.H.      49(82) 51(82) 82(117) 91(170) 95—97 206(77) 218(77) 269
Lindelof, P.E.      104(27) 186
Lionti, F.      150(115 123) 154(115) 176(123) 189
Lipinski, M.      104(28) 186
Lippmann — Schwinger equation, vibrational energy relaxation, mean field approximation      231—232
Liu, D.S.      54—55(102) 96
Liverman, M.G.      82(120) 96
Livingstone, J.D.      135(85) 141(85) 188
Lobaugh, J.      239(103) 270
Loiseau, A.      104(36) 109(36) 111(36) 121(36) 142(36) 144(36) 180(36) 186
Lok, J.G.S.      104(27) 186
Lombardi, M.      46(3 20—21) 47(3 20—21 24 32 34—36) 49(89) 51(89) 88(137) 93—95 97
Long-distance electron tunneling, analytic techniques, future development      37
Long-distance electron tunneling, density functional theory (DFT) calculations      38—39
Long-distance electron tunneling, Gaussian basis vs. real-space (grid) calculations      37—38
Long-distance electron tunneling, many-electron formulation, current density operator      12—13
Long-distance electron tunneling, many-electron formulation, Hartree — Fock approximation      15—18
Long-distance electron tunneling, many-electron formulation, interatomic tunneling currents      18—21
Long-distance electron tunneling, many-electron formulation, spatial distribution of current density      13—15
Long-distance electron tunneling, one-electron theory, interatomic currents and paths      9—12
Long-distance electron tunneling, one-electron theory, protein pruning      8—9
Long-distance electron tunneling, one-electron theory, tunneling matrix element, very large systems      6—8
Long-distance electron tunneling, polarization cloud dynamics      36—37
Long-distance electron tunneling, protein dynamic effects      39—40
Long-distance electron tunneling, theoretical background      2—6
Long-distance electron tunneling, tunneling current calculations, exchange effects      34—36
Long-distance electron tunneling, tunneling current calculations, pruned His-125 molecule      24—27
Long-distance electron tunneling, tunneling current calculations, quantized vortices in tunneling flow      27—32
Long-distance electron tunneling, tunneling current calculations, Ruthenium-modified copper protein electron transfer      21—24
Long-distance electron tunneling, tunneling current calculations, transfer matrix element      32—33
Long-distance electron tunneling, tunneling current calculations, transition state analysis      33—34
Loss, D.      155(138) 161(145) 171(138) 173(138) 176(174) 189—190
Louisell, W.H.      225(95) 270
Low-field limit, singlet-triplet (S-T) conversion, Zeeman interaction operator      63—65
Low-temperature behavior, vibrational energy relaxation, one-harmonic-oscillator bath model      258—260
Lowther, J.E.      206(75) 269
Lu, L.      103(20) 185
Lu, Y.      104(30) 186
Maan, J.C.      104(27) 186
MacElroy, R.D.      237(98) 241(98) 270
Madura, J.D.      239(102) 270
Magnetic fields, excited-state dynamics, acetylene      88—90
Magnetic fields, excited-state dynamics, anisotropic spin-spin constants      92—93
Magnetic fields, excited-state dynamics, diazines      90—92
Magnetic fields, excited-state dynamics, oxalylfluoride      82—88
Magnetic fields, perturbation effects, theoretical background      46—49
Magnetic fields, singlet-triplet (S-T) conversion, interaction schemes and      68—78
Magnetic fields, singlet-triplet (S-T) conversion, triplet-state wave functions      78—82
Magnetic quantum tunneling      see "Quantum tunneling"
Magnetic quenching (MQ), acetylene fluorescence      89—90
Magnetization reversal, nanometer-sized particles and clusters, micro-SQUID mangetometry      104—114
Magnetization reversal, nanometer-sized particles and clusters, micro-SQUID mangetometry, array schematics      113
Magnetization reversal, nanometer-sized particles and clusters, micro-SQUID mangetometry, blind mode three-dimensional switching field measurements      111—113
Magnetization reversal, nanometer-sized particles and clusters, micro-SQUID mangetometry, cold mode magnetization switching measurements      109—111
Magnetization reversal, nanometer-sized particles and clusters, micro-SQUID mangetometry, critical current magnetization measurements      105—109
Magnetization reversal, nanometer-sized particles and clusters, micro-SQUID mangetometry, fabrication techniques      105
Magnetization reversal, nanometer-sized particles and clusters, micro-SQUID mangetometry, future applications      114
Magnetization reversal, nanometer-sized particles and clusters, micro-SQUID mangetometry, hysteresis loop measurement feedback      109
Magnetization reversal, nanometer-sized particles and clusters, micro-SQUID mangetometry, scanning microscopy      114
Magnetization reversal, nanometer-sized particles and clusters, micro-SQUID mangetometry, SQUID configuration selection      104-105
Magnetization reversal, nanometer-sized particles and clusters, quantum tunneling      149—183
Magnetization reversal, nanometer-sized particles and clusters, quantum tunneling, environmental decoherence effects      165—176
Magnetization reversal, nanometer-sized particles and clusters, quantum tunneling, individual single-domain particles      176—183
Magnetization reversal, nanometer-sized particles and clusters, quantum tunneling, molecular clusters      150—165
Magnetization reversal, nanometer-sized particles and clusters, research background      100—102
Magnetization reversal, nanometer-sized particles and clusters, single-particle measurement techniques      102—114
Magnetization reversal, nanometer-sized particles and clusters, temperature effects      135—149
Magnetization reversal, nanometer-sized particles and clusters, temperature effects, Neel — Brown model      136—138
Magnetization reversal, nanometer-sized particles and clusters, zero Kelvin reversal      114—135
Magnetization reversal, nanometer-sized particles and clusters, zero Kelvin reversal, nonuniform magnetization reversal      129—135
Magnetization reversal, nanometer-sized particles and clusters, zero Kelvin reversal, uniform rotation (Stoner — Wohlfarth model)      115-129
Magnetocrystalline anisotropy (MC), zero Kelvin magnetization reversal, Stoner — Wohlfarth uniform rotation model      118—120
Magnetoelastic (ME) anisotropy, zero Kelvin magnetization reversal, Stoner — Wohlfarth uniform rotation model      118—120
Mailly, D.      103(22) 104(22 34—39) 105—106(43—44) 109(36—39) 111(35—39) 113(48) 114(43—44 50—51) 120(22 59) 121(36—39) 128(65) 131—132(35 74) 133(79) 134(22 59 79) 142(36—39 59) 144(36—37) 146(35 74) 147(59 74 79) 148(59 74) 151(126) 155(129) 159(129) 168(129) 173(126) 179(22 35) 180(36—37) 185—187 189
Makarov, V.I.      46(7 13 19) 47—48(19 37—41) 49(37—41) 53(93—94 96) 62(39) 67(19) 77(19 39—41) 79(19) 82(19 41) 83(39—41 128) 84(19 39—41 128) 85(37—38 40) 86(37—41) 87(19 37—41) 88(39 41) 89(143 145) 90(143) 91—92(41) 93—97
Manganese molecular clusters, environmental decoherence effects, hyperfine couplings      170—171
Manganese molecular clusters, magnetic quantum tunneling      150—151
Manganese molecular clusters, magnetic quantum tunneling, anisotropy measurements      1564
Mangin, S.      113(48) 186
Maniero, A.L.      150(124) 176(124) 189
Manny, M.      104(41) 161(41) 186
Many-electron formulation, long-distance election tunneling, current density operator      12—13
Many-electron formulation, long-distance election tunneling, Hartree — Fock approximation      15—18
Many-electron formulation, long-distance election tunneling, interatomic tunneling currents      18—21
Many-electron formulation, long-distance election tunneling, spatial distribution of current density      13—15
Many-electron formulation, Ruthenium-modified copper protein, His/Met residue tunneling transition      26—27
Many-electron formulation, vibrational energy relaxation, theoretical background      196—197
Mao, Y.      3(16) 42
Marchal, G.      113(48) 186
Marcus — Levich — Dogonadze expression, protein dynamics, electron-phonon coupling      40
Marcus, R.A.      2—4(8) 6(41) 8(41 48) 26(8) 32(8) 40(8) 41 43
Marley, A.      104(30) 186
Maroncelli, M.      200(51) 269
Martet, C.      121(60) 187
Martin, R.L.      26(66) 44
Martinis, J.M.      104(40) 186
Matrix elements      see also "Tunneling matrix element"
Matrix elements, singlet-triplet (S-T) conversion, first-order perturbations      58—61
Matrix elements, singlet-triplet (S-T) conversion, magnet field interaction      68—78
Matrix elements, singlet-triplet (S-T) conversion, second-order perturbations      61—62
Matrix elements, singlet-triplet (S-T) conversion, triplet-state wave functions, magnetic field      78—82
Matrix elements, singlet-triplet (S-T) conversion, Zeeman perturbation      62—68
Matrix elements, tunneling flow calculations      32—33
Matsuda, T.      103(13) 185
Matsumoto, Y.      46(14) 47(14 43—45) 90(14 43—45) 91(43—45 169) 93—94 97
Matsuzaki, A.      46(6 22) 47(22 27) 62(22) 64(22) 93—94
Matsuzaki, M.      46(4) 47(4 26) 93—94
Maude, D.K.      103(23) 179(23) 185
Maurice, J.L.      104(32) 186
Maxwell equations, tunneling flow vortices      31—32
McConnell, H.M.      4(20) 36(20) 42
McCormick, S.      39(76) 44
McCullough, E.A.Jr.      26(69) 44
McDonald, I.R.      194(14) 205(73) 238(100) 239(73) 268—270
McDonald, J.R.      82(126) 96
McFadyen, I.      103(16) 185
McHugh, A.J.      47(28) 94
McLaughlin, I.      49(59) 51(59) 94
McNiff, E.J.      147(105) 188
McVitie, S.      103(15) 185
Mean field approximation, $CN^{-}$ ions in aqueous solution, relaxation times      240—241
Mean field approximation, vibrational energy relaxation, mixed quantum-classical molecular dynamics      229—232
Mean field approximation, vibrational energy relaxation, theoretical background      196
Medvedev, D.      8(50) 9(50—951) 11(50) 24(50) 36(50) 38(50) 43
Medvedev, E.S.      8(45—47) 31(45) 34(45—47) 39—40(45—46) 43
Meerts, W.L.      90(151) 97
Megy, R.      103(17) 185
Meier, J.      104(35) 1 131—132(35 74) 146(35 74) 147—148(74) 179(35) 186—187
Meiweis-Broer, K.H.      103(20—21) 185
Melinon, P.      104(39) 109(39) 121(39 60—61) 123(61) 142(39) 186—187
Merer, A J.      54—55(98) 95
Mesoscopic effects, quantum tunneling magnetization reversal      149—150
Met residue, Ruthenium-modified copper protein, tunneling transition      24—27
Metiu, H.      202(59) 269
Metz, F.      49(84) 51(84) 95
Meyer, P.      103(17) 185
Michel, C.      46(3 20—21) 47(3 20—21 24 30 34 36) 93—94
Michel-Beyerle, M.E.      4(17) 42
Micro-SQUID magnetometry, magnetic quantum tunneling, iron molecular clusters      151—152
Micro-SQUID magnetometry, magnetization reversal, nanometer-sized particles and clusters      104—114
Micro-SQUID magnetometry, magnetization reversal, nanometer-sized particles and clusters, array schematics      113
Micro-SQUID magnetometry, magnetization reversal, nanometer-sized particles and clusters, blind mode three-dimensional switching field measurements      111—113
Micro-SQUID magnetometry, magnetization reversal, nanometer-sized particles and clusters, cold mode magnetization switching measurements      109—111
Micro-SQUID magnetometry, magnetization reversal, nanometer-sized particles and clusters, critical current magnetization measurements      105—109
Micro-SQUID magnetometry, magnetization reversal, nanometer-sized particles and clusters, fabrication techniques      105
Micro-SQUID magnetometry, magnetization reversal, nanometer-sized particles and clusters, future applications      114
Micro-SQUID magnetometry, magnetization reversal, nanometer-sized particles and clusters, hysteresis loop measurement feedback      109
Micro-SQUID magnetometry, magnetization reversal, nanometer-sized particles and clusters, scanning microscopy      114
Micro-SQUID magnetometry, magnetization reversal, nanometer-sized particles and clusters, SQUID configuration selection      104—105
Micro-SQUID magnetometry, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model      142—144
Miguel, M.C.      177(176) 190
Mihama, K.      103(13) 185
Mikami, T.      238(99) 270
Miller, A.      176(169) 190
Mixed quantum-classical molecular dynamics, $CN^{-}$ ions in aqueous solution, relaxation times      240—241
Mixed quantum-classical molecular dynamics, vibrational energy relaxation, applications      232—237
Mixed quantum-classical molecular dynamics, vibrational energy relaxation, direct simulation      228—237
Mixed quantum-classical molecular dynamics, vibrational energy relaxation, future research applications      266—267
Mixed quantum-classical molecular dynamics, vibrational energy relaxation, mean field approximation      229—232
Mixed quantum-classical molecular dynamics, vibrational energy relaxation, theoretical background      195—196
Miyashita, S.      155(133—134) 189
Molecular clusters, environmental decoherence effects      165-176
Molecular clusters, environmental decoherence effects, hole digging analysis, dipolar distribution and hyperfine coupling      166—168
Molecular clusters, environmental decoherence effects, hyperfine interaction      170—171
Molecular clusters, environmental decoherence effects, intermolecular dipole interaction      168-170
Molecular clusters, environmental decoherence effects, Landau — Zener tunneling probability      171—175
Molecular clusters, environmental decoherence effects, Prokof'ev — Stamp theory      165—166
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå