Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 118
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 118



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in Chemical Physics. Volume 118

Àâòîðû: Prigogine I. (ed.), Rice S.A. (ed.)

Àííîòàöèÿ:

This is the only series of volumes available that represents the cutting edge of research relative to advances in chemical physics. Provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. Continues to report recent advances with significant, up-to-date chapters. Contributing authors are internationally recognized researchers.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 304

Äîáàâëåíà â êàòàëîã: 08.12.2013

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Drabbels, M.      90(151) 97
Dreysse, H.      101(4) 185
Dubois, S.      131—132(73) 187
Dubonos, S.V.      104(27) 186
Dupin, J.P.      104(34) 186
Dupre, P.      47(32 34—35) 88(137 140) 90(152—153) 94 97
Dupuis, V.      104(34 39) 109(39) 121(39 60—61) 123(61) 142(39) 186—187
Durig, J.R.      82(124) 96
Dutton, L.P.      2—4(2) 40(2) 41
Dynamic correlations, electron tunneling      40-41
Dzialoshinskii, I.E.      13(57) 37(57) 44
Eberl, K.      104(28) 186
Eggers, D.F.      90(159) 97
Eggers, E.      4(17) 42
Egorov, S.A.      194(20—23 25) 206(20—23 25 83) 246(22 25) 268 270
Ehrenfest method, vibrational energy relaxation, mixed quantum-classical molecular dynamics      234—237
El Khatib, M.      105—106(43) 114(43) 186
Electron beam lithography, micro-SQUID magnetometry fabrication      105
Electron spin/nuclear-spin decoupling mechanism (ESNSDM), acetylene fluorescence      90
Electron spin/nuclear-spin decoupling mechanism (ESNSDM), indirect mechanism (IM) theory      47—49
Electron spin/nuclear-spin decoupling mechanism (ESNSDM), oxalylfluoride, magnetic field influence on excited-state dynamics      86—88
Electron transfer, exchange effects      34—36
Electron transfer, one-electron long-distance tunneling, tunneling matrix element, very large systems      8
Electron transfer, tunneling current calculation, Ruthenium-modified copper protein      21—24
Electron tunneling (ET)      see also "Long-distance electron tunneling"
Electron-phonon coupling, protein dynamics      39—40
Electronic coupling, one-electron long-distance tunneling, tunneling matrix element, very large systems      8
Ellipsoid rotations, nonuniform zero Kelvin magnetization reversal, curling mechanisms      129—133
Elsaesser, T.      192(3) 267
Emmert, J.W.      101(7) 185
Endo, J.      103(13) 185
Englman, R.      49(67) 51(67) 95
Environmental decoherence effects, magnetic quantum tunneling, molecular clusters      165—176
Environmental decoherence effects, magnetic quantum tunneling, molecular clusters, hole digging analysis, dipolar distribution and hyperfine coupling      166—168
Environmental decoherence effects, magnetic quantum tunneling, molecular clusters, hyperfine interaction      170—171
Environmental decoherence effects, magnetic quantum tunneling, molecular clusters, intermolecular dipole interaction      168—170
Environmental decoherence effects, magnetic quantum tunneling, molecular clusters, Landau — Zener tunneling probability      171-175
Environmental decoherence effects, magnetic quantum tunneling, molecular clusters, Prokof'ev — Stamp theory      165—166
Environmental degrees of freedom, vibrational energy relaxation Hamiltonians      197—200
Eremenchuk, G.G.      47(33) 94
Esteve, D.      104(40) 186
Evenson, J.W.      6(39) 43
Everitt, K.F.      194(23—25) 206(23—25) 246(25) 268
Excess energy dependence, oxalylfluoride, magnetic field influence on excited-state dynamics      83
Exchange effects, electron vs. hole transfer      34—36
Excited-state dynamics, magnetic fields, acetylene      88—90
Excited-state dynamics, magnetic fields, anisotropic spin-spin constants      92—93
Excited-state dynamics, magnetic fields, diazines      90—92
Excited-state dynamics, magnetic fields, oxalylfluoride      82—88
Excited-state dynamics, singlet-triplet (S-T) conversion mechanism      \51—52
Faini, G.      104(29) 186
Fano, U.      49(53) 51(53) 94
Farid, R.S.      39(80) 44
Faucher, M.      105(46) 114(46) 186
Fayer, M.D.      203(64) 206(81—82) 269—270
Feedback mode, micro-SQUID magnetometry, hysteresis loop measurements      109
Felker, P.M.      47(42) 90(42) 94
Felts, A.K.      3(13) 42
Fermi interaction, singlet-triplet (S-T) conversion mechanism, triplet-state structure      54—56
Fermi's golden rule, $CN^{-}$ ions in aqueous solution, relaxation times      239—241
Fermi's golden rule, $CN^{-}$ ions in aqueous solution, spectral density      242—243
Fermi's golden rule, vibrational energy relaxation, force autocorrelation function      203—206
Fermi's golden rule, vibrational energy relaxation, force-force time correlation function      225—226
Fermi's golden rule, vibrational energy relaxation, influence action      223—226
Fermi's golden rule, vibrational energy relaxation, mixed quantum-classical molecular dynamics      228—229
Fermi's golden rule, vibrational energy relaxation, theoretical background      194—195
Fermi's golden rule, vibrational energy relaxation, time-dependent transition probability      218—223
Fernandez, A.      133(83) 187
Ferrano, M.      205(73) 238(100) 239(73) 269—270
Ferre, R.      131—132(73) 187
Ferrimagnetic particles      see also "Iron molecular clusters"
Ferrimagnetic particles, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model      147—149
Fert, A.      104(29 32) 147(102) 186 188
Fettar, F.      104(32) 186
Feynman diagrams, vibrational energy relaxation, perturbative influence functional, nonlinear couplings      213—217
Feynman, R.P.      26(68) 44 163(147) 165(158) 190 195(26—27) 207(26—27) 208(26) 211(26—27) 217(26—27) 219(27) 268
Field, R.W.      88(137—138 140) 90(153) 97
Field-sweeping rates, Landau — Zener tunneling, iron $(Fe_{8})$ molecular clusters      159—161
Figueirido, R.E.      205(69) 269
Fine, A.      10(52) 31(52) 43
Fiorani, D.      103(8) 138(8) 141(8) 185
First-order perturbations, singlet-triplet (S-T) conversion, matrix elements      58—61
Fisher, M.P.A.      149(107) 188
Flemming, G.R.      192(5) 267
Fluctuation-dissipation theory, vibrational energy relaxation, Langevin equation      202—203
Fluorescence decay, acetylene magnetic effects      89—90
Fluorescence decay, oxalylfluoride, magnetic field influence on excited-state dynamics      83—84
Fokker — Planck equation, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model      136—138
Foner, S.      147(105) 188
Fong, F.      206(76) 218(76) 269
Force autocorrelation function, $CN^{-}$ ions in aqueous solution, relaxation times      239—241
Force autocorrelation function, vibrational energy relaxation, classical Langevin equation      202—203
Force autocorrelation function, vibrational energy relaxation, Fermi's golden rule      203—206
Force-force time correlation function, vibrational energy relaxation, influence functional theory      225—226
Forch, B.J.      91(174) 97
Forester, D.W.      147(103) 188
Formaldehyde, singlet-triplet (S-T) conversion, magnet field interaction      69—71
Forseman, J.B.      26(66) 44
Forster, J.      147(104) 188
Fort, A.      163(149) 168(163) 190
Fourier transform, protein dynamics, electron-phonon coupling      40
Fourier transform, vibrational energy relaxation, centroid molecular dynamics      227
Fourier transform, vibrational energy relaxation, Fermi's golden rule, force autocorrelation function      204—206
Fournier, T.      105(46) 114(46) 186
Fox, D.J.      26(66) 44
Frad, A.      91(165) 97
Franck — Condon factor, many-electron tunneling, Hartree — Fock approximation      16—18
Franck — Condon factor, singlet-triplet (S-T) conversion, magnet field interaction      70—78
Franck — Condon factor, singlet-triplet (S-T) conversion, Zeeman interaction operator      66—67
Franck, A.      104(31) 186
Frankland, S.A.J.      200(51) 269
Freed, K.F.      49(74 78 85—88) 51(74 78 85—88) 95 202(59) 269
Freeman, A.J.      101(3) 185
Frei, H.      129(66) 131(66) 187
Friedman, J.R.      150(114) 154(114) 188
Friendl, R.R.      90(158) 97
Friesner, R.A.      3(13) 42 195(35) 232(35) 268
Frisch, M.J.      26(66) 44
Frosch, R.P.      49(60—61 68) 51(60—61 68) 95
Fruchart O.      113(49) 121(49) 186
Fuji, M.      88(139) 89(141) 97
Fujimura, Y.      49(82) 51(82) 82(117) 95—96
Fujita, M.      47(15) 90(15) 92(15) 93
Fukuda, Y.      46(10) 53(95) 93 95
Fukunaga, H.      200(49) 269
Functional derivatives, vibrational energy relaxation, time-dependent transition probability      220—223
Gai, H.      205(70) 269
Gallagher, W.J.      104(30) 186
Garanin, D.A.      173(168) 190
Garcia, N.      142(99) 188
Garcia-Mochales, P.      142(99) 188
Garcia-Pablos, D.      142(99) 188
Garg, A.      140—141(95) 149(107) 153(128) 163(128 148 150) 188—190
Gas compounds, magnetic field effects      46—47
Gatteschi, D.      150(111—112 115—116 121) 151(109—110 126) 152(109—110 112 127) 154(115) 158(140) 160(144) 163(110 112 155) 165(116) 168(144) 170(144 164) 171(140) 172(166) 173(126 140) 175(140) 176(121 170) 188—190
Gaussian distribution, vibrational energy relaxation, one-harmonic-oscillator bath model      254—255
Gaussian-type basis functions (GTF), electron tunneling calculations      37—38
Gehlen, J.N.      6(38) 8(38 48) 9(38) 43
Geim, A.K.      104(27) 186
Geldof, P.A.      54—55(106) 96
Genner, U.      103(23) 179(23) 185
Genoe, J.      103(23) 179(23) 185
George, J.M.      131—132(73) 187
Georgievski, Yu.      17(64) 44
Germanas, J.P.      2—4(6) 26(6) 33(6) 41
Gibbons, M.R.      133(83) 187
Gider, S.      104(26) 151(26) 186
Giese, B.      4(17) 42
Gilbert's equation, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model      136—138
Gilbert, S.E.      104(25 31) 185
Gill, P.M.W.      26(66) 44
Giordano, N.      104(24) 180(24) 185
Givord, D.      113(49) 121(49) 186
Glyoxal, singlet-triplet (S-T) conversion, magnet field interaction      71—73
GMH method, one-electron long-distance tunneling, interatomic currents and paths      11—12
GMRes method, one-electron long-distance tunneling, tunneling matrix element, very large systems      7—8
Gnanakaran, S.      202(60) 203(62) 269
Goddard, W.A.      15(61) 44
Godunov, I.A.      82(119) 96
Goeble, C.J.      26(71) 44
Goedecker, S.      6(35) 43
Goetz, W.      47(28) 94
Golden, S.      54—55(109) 96
Goldman, M.      55(112) 96
Goldstein, S.      10(52) 31(52) 43
Gomperts, R-      26(66) 44
Gonzalez, C.      26(66) 44
Gonzalez, J.      142(98) 188
Gonzalez, J.M.      142(98) 188
Goodman, J.W.      255(105) 270
Goodman, L.      49(72) 51(72) 95
Goodyear, G.      198(46) 203(63 66—67) 269
Gorkov, L.P.      13(57) 37(57) 44
Grabert, H.      206(85) 270
Gray, H.B.      2—3(4—7) 4(5—6 22) 7(4—5) 9(22) 26(6—7) 33(4—7) 40(5) 41—42
Green's functions, one-electron long-distance tunneling, interatomic currents and paths      11—12
Green's functions, one-electron long-distance tunneling, tunneling matrix element, very large systems      7—8
Green, P.G.      88(137—138 140) 90(152—153) 97
Grifoni, M.      155(137) 189
Grinstein, G.      161(145) 189
Gros, V.      104(29) 186
Gruschus, M.      6(40) 43
Gueron, S.      104(33) 186
Guiraud, G.      104(34) 121(61) 123(61) 186—187
Gunther, L.      137(92—93) 149(108) 177(108) 188
Guo, J.X.      5(30—31) 10(30—31) 26(31) 31(31) 42—43
Haenggi, P.      155(137) 189 192(5) 267
Hagston, W.E.      206(75) 269
Hajima, A.      88(139) 89(141) 97
Hall, G.G.      15(59) 44
Hamiltonians, vibrational energy relaxation      197—200
Hamm, P.      192(9) 196(9) 238(9) 245(9) 267
Hamzic, A.      104(29) 186
Hanke, D.      152(127) 189
Hannum, S.E.      82(124) 96
Hansen, J.R.      194(14) 268
Harmon, B.N.      165(157) 176(171) 190
Harmonic oscillator bath, $CN^{-}$ ions in aqueous solution, relaxation      247
Harmonic oscillator bath, vibrational energy relaxation, Fermi's golden rule, force autocorrelation function      206
Harmonic oscillator bath, vibrational energy relaxation, Hamiltonians      198—200
Harmonic oscillator bath, vibrational energy relaxation, influence functional theory      208—209
Harmonic oscillator bath, vibrational energy relaxation, theoretical background      197
Harmonic oscillator bath, vibrational energy relaxation, time-dependent transition probability      217—223
Harris, C.      201(52) 269
Harris, R.A.      49(54) 51(54) 94
Harrowell, P.R.      49(74) 51(74) 95
Hartree — Fock approximation, many-electron tunneling      15—18
Hartree — Fock approximation, polarization cloud dynamics      36—37
Hartree — Fock approximation, tunneling flow vortices, highest occupied molecular orbital (HOMO)      29—32
Hashimoto, K.      47(29) 94
Hashimoto, N.      89(142) 97
Hasselbach, K.      103(22) 104(22 34—37) 109(36—37) 111(35—37) 113(48) 114(50—51) 120(22 59) 121(36—37) 128(65) 131—132(35 74) 133(79) 134(22 59 79) 142(36—37 59) 144(36—37) 146(35 74) 147(59 74 79) 149(59 74) 179(22 35) 180(36—37) 185—187
Hathaway, T.      150(119) 154(119) 189
Hayashi, H.      46(8 10 17 19) 47(8 19) 48(19) 53(95) 67(19) 77(19) 79(19) 82—84(19) 87(19) 89(8) 93 95
He, H.      126(62) 187
Head-Gordon, M.      26(66) 44
Heaviside step function, vibrational energy relaxation, time-dependent transition probability      221—223
Heelis, P.      8—9(49) 11(49) 24(49) 43
Heffernan, S J.      103(15) 185
Heiderbach, C.      201(58) 269
Heifets, E.N.      5(30) 10(30) 42
Heilweil, E.J.      192(2) 267
Heinze, J.      90(151) 97
Heisenberg representation, vibrational energy relaxation, Fermi's golden rule, force autocorrelation function      204—206
Hellman — Feynman force, vibrational energy relaxation, mean field approximation      230—232
Hencher, J.L.      82(122) 96
Henderson, R.S.      54—55(103) 96
Henderson, T.M.      36(78) 44
Hendey, C.L.      161(146) 190
Hendrickson, D.N.      150(120 122 124) 154(120) 173(120) 176(122 124) 189
Herman, M.      88(135) 96
Herman, M.F.      206(86—87) 270
Hermitian operators, many-electron tunneling, current density operator      12—13
Hernandez, J.M.      176(173) 190
Herzberg — Teller approximation, singlet-triplet (S-T) coupling, vibronic interaction operator      56
Herzberg, G.      48(51—52) 54—55(103) 69(52) 94 96
Hibbs, A.R.      195(27) 207(27) 211(27) 217(27) 219(27) 268
High-field limit, singlet-triplet (S-T) conversion, Zeeman interaction operator      65—67
High-temperature behavior, vibrational energy relaxation, one-harmonic-oscillator bath model      257—258
Highest occupied molecular orbital (HOMO), tunneling flow vortices      29—32
Hilbert space, many-electron tunneling, Mulliken population operators      19—20
Hill, S.      150(119) 154(119) 189
Hinzke, D.      142(100) 188
Hirota, N.      203(65) 269
Hirschfelder, J.L.      26(70—71) 44
His residue, Ruthenium-modified copper protein, tunneling transition      24—27
Hochstrasser, R.M.      49(75) 51—52(75) 95 192(7—9) 196(8—9) 202(60) 203(62) 238(8—9) 245(9) 267 269
Hole transfers, exchange effects      34—36
Hole transfers, one-electron long-distance tunneling, tunneling matrix element, very large systems      8
Hole-digging mechanism, environmental decoherence effects, dipolar distribution and hyperfine couplings      166—168
Hole-digging mechanism, Landau — Zener tunneling, iron $(Fe_{8})$ molecular clusters      159—160
Holian, B.L.      201(54) 269
Hollas, J.M.      82(127) 96
Holody, P.      104(32) 186
Hong, H.K.      49(83) 51(83) 95
Hong, K.      104(24) 180(24) 185
Hoover, W.G.      193(11) 268
Hopping mechanisms, long-distance electron tunneling      3—4
Hougen, J.T.      54—55(99 105) 88(134) 95—96
Howard, B.J.      90(156) 97
Howard, W.E.      54—55(108) 57—58(108) 96
Hoyting, G.J.      54—55(106) 96
Hu, B.L.      211(91) 225(91 96) 270
Hu, C.-H.      104(41) 161(41) 186
Hu, H.      163(154) 190
Hubert, A.      101(1) 133(82) 185 187
Huffman, J.C.      150(124) 176(124) 189
Hund case coupling, singlet-triplet (S-T) conversion      56
Hund case coupling, singlet-triplet (S-T) conversion, electron-spin wave functions      58
Hund case coupling, singlet-triplet (S-T) conversion, Zeeman perturbation matrix elements      62—68
Hund case coupling, triplet states      48—49
Huo, W.H.      62(116) 64—65(116) 96
Huttner, G.      151—152(125) 189
Hwang, D.S.      177—178(177) 190
Hynes, J.T.      196(40) 201(56—57) 202(56 71—72) 205(40) 238(40) 268—269
Hyperfine couplings, environmental decoherence effects, molecular clusters      166—168
Hyperfine couplings, environmental decoherence effects, molecular clusters, iron and manganese clusters      170—171
Hyperfine splitting, singlet-triplet (S-T) conversion mechanism, triplet-state structure      55—56
Hysterecic V-I curve, micro-SQUID magnetometry, critical current measurements      105—109
Hysteresis loop measurements, Landau — Zener tunneling, environmental decoherence      173—175
Hysteresis loop measurements, magnetic quantum tunneling, iron $(Fe_{8})$ molecular clusters      153—154
Hysteresis loop measurements, magnetic quantum tunneling, Landau — Zener tunneling, iron $(Fe_{8})$ molecular clusters      155—160
Hysteresis loop measurements, micro-SQUID magnetometry, feedback mode      109
Hysteresis loop measurements, nonuniform zero Kelvin magnetization reversal, nucleation and annihilation of domain walls      133—135
Hysteresis loop measurements, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model      147—149
Hysteresis loop measurements, zero Kelvin magnetization reversal, Stoner — Wohlfarth uniform rotation model      116—120
Imamura, T.      53(95) 95
Impey, R.W.      239(102) 270
Indirect mechanism (IM) theory, acetylene fluorescence      90
Indirect mechanism (IM) theory, defined      46—49
Indirect mechanism (IM) theory, singlet-triplet (S-T) conversion mechanism      52-53
Inelastic tunneling, protein dynamics      39—40
Influence functional theory, vibrational energy relaxation      207—226
Influence functional theory, vibrational energy relaxation, future research applications      265—267
Influence functional theory, vibrational energy relaxation, general principles      208—209
Influence functional theory, vibrational energy relaxation, perturbative influence, nonlinear couplings      210—217
Influence functional theory, vibrational energy relaxation, quantum probability fluctuation, density matrix moments      248—252
Influence functional theory, vibrational energy relaxation, time-dependent transition probability      217—223
Ingold, C.K.      88(132) 96
Innes, K.      88(133) 96
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå