Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 118
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 118



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Advances in Chemical Physics. Volume 118

Авторы: Prigogine I. (ed.), Rice S.A. (ed.)

Аннотация:

This is the only series of volumes available that represents the cutting edge of research relative to advances in chemical physics. Provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. Continues to report recent advances with significant, up-to-date chapters. Contributing authors are internationally recognized researchers.


Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2001

Количество страниц: 304

Добавлена в каталог: 08.12.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Vibrational energy relaxation, path integral approach, centroid molecular dynamics      226—227
Vibrational energy relaxation, path integral approach, general principles      208—209
Vibrational energy relaxation, path integral approach, influence functional theory      207—226
Vibrational energy relaxation, path integral approach, perturbative influence, nonlinear couplings      210—217
Vibrational energy relaxation, path integral approach, time-dependent transition probability      217—223
Vibrational energy relaxation, quantum probability fluctuation      247—265
Vibrational energy relaxation, quantum probability fluctuation, density matrix moments      248—252
Vibrational energy relaxation, quantum probability fluctuation, distribution function      261—263
Vibrational energy relaxation, quantum probability fluctuation, N-oscillators bath      263—265
Vibrational energy relaxation, quantum probability fluctuation, one-harmonic-oscillator bath coupling      252—261
Vibrational energy relaxation, quantum probability fluctuation, one-harmonic-oscillator bath coupling, classical limit      255—257
Vibrational energy relaxation, quantum probability fluctuation, one-harmonic-oscillator bath coupling, exact vibration solution      253—255
Vibrational energy relaxation, quantum probability fluctuation, one-harmonic-oscillator bath coupling, high-temperature behavior      257—258
Vibrational energy relaxation, quantum probability fluctuation, one-harmonic-oscillator bath coupling, low-temperature behavior      258—260
Vibrational energy relaxation, quantum probability fluctuation, one-harmonic-oscillator bath coupling, numerical applications      260—261
Vibrational energy relaxation, theoretical background      192—197
Vibronic interaction operator, singlet-triplet (S-T) coupling      56
Vibronic interaction operator, singlet-triplet (S-T) coupling, first-order perturbation matrix elements      59—61
Vibronic-spin-orbit (VSO) perturbation, singlet- triplet (S-T) conversion      49—50
Vibronic-spin-orbit (VSO) perturbation, singlet- triplet (S-T) conversion, coupling mechanisms      56
Vibronic-spin-orbit (VSO) perturbation, singlet- triplet (S-T) conversion, magnet field interaction      69—78
Vibronic-spin-orbit (VSO) perturbation, singlet- triplet (S-T) conversion, second-order matrix elements      61—62
Victora, R.H.      119(56) 187
Vieth, M.      133(82) 187
Vikhrenko, V.S.      201(58) 269
Vilisov, A.F.      46(9) 93
Villain, J.      163(149) 168(163) 190
Villar, V.      160(144) 168(144) 170(144) 172(166) 176(170) 189—190
Visscher, P.B.      201(54) 269
Volterra equation, vibrational energy relaxation, mean field approximation      231—232
von Delft, J.      161(146) 190
von Molnar, S.      104(26) 151(26) 186
Vortex quantization, tunneling flow vortices      27—32
Voter, A.F.      15(61) 44
Voth, G.A.      39(79) 44 195(29 31) 196(31) 205(70) 207(29) 226(29) 227(29 31) 238(31) 239(103) 268—270
Waiting time measurements, magnetic quantum tunneling, single-domain nanoparticles and wires, very low temperatures      179—181
Waiting time measurements, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model      138—140
Waldron, J.T.      136—137(89) 188
Wall, M.A.      133(83) 187
Walters, M.A.      173(167) 190
Wang, J.      5(33) 10(33) 38—39(33) 43 197(44) 251(44) 253(44) 255(44) 269
Wanta, T.      6(42) 43
Watson, J.K.G.      88(134—135) 96
Watts, R.O.      90(159) 97 200(50) 269
Wave function equations, singlet-triplet (S-T) conversion, Hund case electron-spin wave functions      58
Wave function equations, singlet-triplet (S-T) conversion, singlet-triplet (S-T) conversion mechanism, triplet-state structure      54—56
Wave function equations, singlet-triplet (S-T) conversion, triple-state magnetic fields      78—82
Wave function equations, singlet-triplet (S-T) conversion, vibrational energy relaxation, mixed quantum-classical molecular dynamics      232—237
Wave function equations, singlet-triplet (S-T) conversion, vibrational energy relaxation, quantum probability fluctuation, density matrix moments      248—252
Webster, F.A.      195(35) 232(35) 268
Wegrowe, J.E.      104(25 31) 133—134(79) 147(79) 185—187
Weiss, D.      104(28) 186
Weiss, U.      207(90) 211(90) 218(90) 220(90) 225(90) 270
Wemple, M.B.      150(122) 176(122) 189
Wensdorfer, W.      103(22) 104(22 34—39) 105(45) 107(45) 109(36—38) 111(35—38) 113(45 47—49) 114(45—46 51) 120(22 59) 121(36—38 49 61) 123(61) 128(65) 131—132(35 74) 133(79) 134(22 59 79) 136(90) 137(90—91) 142(36—38 59) 144(36—37) 146(35 74) 147(59 74 79) 148(59 74) 150(121) 151(126) 155(129) 159(129) 160(144) 168(129 144) 169(47) 170(144 164) 172(166) 173(126) 175(47) 176(121 169—170) 179(22 35) 180(36—37) 185—190
Wentzel — Kramers — Brillouin theory, magnetic quantum tunneling, splitting oscillations      163
Whitnell, R.M.      201(53 56—57) 202(53 55) 269
Wieghardt, K.      151(125) 152(125 127) 189
Wigner — Eckart theorem, singlet-triplet (S-T) conversion, Zeeman interaction operator      65—67
Wikstrom, M.      2(11) 42
Williams, D.F.      49(66) 51(66) 95
Wilson, K.R.      201(56—57) 202(56) 269
Wilson, M.A.      237(98) 241(98) 270
Winkler, J.      2—3(4—7) 4(5—6 22) 7(4—5) 9(22) 26(6—7) 33(4—7) 40(5) 41—42
Wodtke, A.M.      90(149) 97
Wohlfarth, E.P.      115(52) 187
Wolynes, P.G.      197(44) 218(94) 251(44) 253(44) 255(44) 269—270
Wong, M.W.      26(66) 44
Wood, P.T.      150(123) 176(123) 189
Wright, A.C.      103(23) 179(23) 185
Wright, M.P.      49(61) 51(61) 95
Wu, R.      101(3) 185
Wyatt, R.E.      15(60) 26(69) 44
Xiao, G.      104(30) 186
Xiong, J-J.      163(154) 190
Yamaguchi, A.      150(124) 176(124) 189
Yamaguchi, T.      203(65) 269
Yamazaki, I.      53(95) 95
Yigas, D.I.      147(104) 188
Yoo, J.      150(124) 176(124) 189
Yoo, S.-K.      163(153) 190
Yu, S.P.      103(11) 185
Zakrzewski, V.G.      26(66) 44
Zaslavskii, O.B.      177(175) 190
Zavorotnyi, V.U.      255(107) 270
Zeeman interaction, magnetic quantum tunneling, tunnel splitting, iron $(Fe_{8})$ molecular clusters      160—165
Zeeman interaction, singlet-triplet (S-T) conversion mechanism, level anticrossing mechanism (LAM) and      52—53
Zeeman interaction, singlet-triplet (S-T) conversion, acetylene magnetic effects      88—90
Zeeman interaction, singlet-triplet (S-T) conversion, magnet field interaction      70—78
Zeeman interaction, singlet-triplet (S-T) conversion, perturbation matrix elements      62—68
Zeeman interaction, singlet-triplet (S-T) conversion, perturbation matrix elements, high-field limit      65—67
Zeeman interaction, singlet-triplet (S-T) conversion, perturbation matrix elements, low-field limit      63—65
Zeeman interaction, singlet-triplet (S-T) conversion, perturbation matrix elements, nuclear angular momentum systems      67—68
Zeeman interaction, singlet-triplet (S-T) conversion, triplet-state wave functions, magnetic field      78—82
Zener, C.      154(131) 189
Zero Kelvin magnetization reversal, nanometersized particles and clusters      114—135
Zero Kelvin magnetization reversal, nanometersized particles and clusters, nonuniform magnetization reversal      129-135
Zero Kelvin magnetization reversal, nanometersized particles and clusters, nonuniform magnetization reversal, curling      129—133
Zero Kelvin magnetization reversal, nanometersized particles and clusters, nonuniform magnetization reversal, domain wall nucleation and annihilation      133—135
Zero Kelvin magnetization reversal, nanometersized particles and clusters, uniform rotation (Stoner — Wohlfarth model)      115-129
Zero Kelvin magnetization reversal, nanometersized particles and clusters, uniform rotation (Stoner — Wohlfarth model), cubic anisotropy      126—129
Zero Kelvin magnetization reversal, nanometersized particles and clusters, uniform rotation (Stoner — Wohlfarth model), experimental data      120—126
Zero Kelvin magnetization reversal, nanometersized particles and clusters, uniform rotation (Stoner — Wohlfarth model), generalization      116—119
Zewail, A.H.      47(42) 90(42) 94
Zhang, Y.      211(91) 225(91 96) 270
Zhong, E.      16(63) 44
Zhong, Y.      150(120) 154(120) 173(120) 189
Zhu, J.-L.      163(154) 190
Ziolo, R.      150(114) 154(114) 188
Zusman, L.D.      39(80) 44
Zwanzig, R.      194(17) 268
Zwerger, W.      149(107) 188
1 2 3 4 5 6
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте