|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 118 |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Molecular clusters, magnetic quantum tunneling 150—165
Molecular clusters, magnetic quantum tunneling, anisotropy in iron molecules 150-154
Molecular clusters, magnetic quantum tunneling, environmental decoherence effects 165—176
Molecular clusters, magnetic quantum tunneling, Landau — Zener tunneling in iron molecules 154-160
Molecular clusters, magnetic quantum tunneling, splitting oscillations 160—165
Molecular clusters, vibrational energy relaxation, one-harmonic-oscillator bath model 252—261
Molecular clusters, vibrational energy relaxation, one-harmonic-oscillator bath model, classical limit 255—257
Molecular clusters, vibrational energy relaxation, one-harmonic-oscillator bath model, exact solution 253—255
Molecular clusters, vibrational energy relaxation, one-harmonic-oscillator bath model, high-temperature behavior 257—258
Molecular clusters, vibrational energy relaxation, one-harmonic-oscillator bath model, low-temperature behavior 258—260
Molecular clusters, vibrational energy relaxation, one-harmonic-oscillator bath model, numerical models 260—261
Molecular dynamics, ions in aqueous solution, relaxation times 238—241
Molecular dynamics, classical approaches 200—201
Molecular dynamics, vibrational energy relaxation 193—194
Molecular orbitals, many-electron tunneling, Hartree — Fock approximation 16—18
Molecular orbitals, tunneling current calculations, density functional theory (DFT) 39
Molecular orbitals, tunneling flow vortices 28—32
Molin, Yu.N. 46(5) 47(5 37—38) 48—49 85—87(37—38) 93—94
Moller, G. 82(121) 96
Monte Carlo simulations, vibrational energy relaxation 193—194
Monte Carlo simulations, vibrational energy relaxation, centroid molecular dynamics 227
Monte Carlo simulations, vibrational energy relaxation, time-dependent transition probability 218—223
Montgomery, J.A. 26(66) 44 90(147) 97
Monts, D.I. 82(120) 96
Moore, C.B. 88(131) 96
Moore, P. 206(82) 270
Morita, A. 205(74) 269
Morokuma, K. 90(154—155) 97 200(49) 269
Morrish, A.H. 103(11) 185
Morse oscillator, vibrational energy relaxation Hamiltonians 199—200
Morse oscillator, vibrational energy relaxation, Fermi's golden rule, force autocorrelation function 205—206
Moser, C.C. 2—4(2—3) 40(2) 41
Mower, L. 49(76) 51(76) 95
Mueller-Kirsten, H.J.W. 163(152) 190
Muenter, J.S. 90(156—157) 97
Mujica, V. 3(16) 6(42) 42—43
Mukamel, S. 3—4(14) 42 206(80) 218(80) 269
Mulliken population operators, many-electron tunneling 18—20
Mulliken population operators, Ruthenium-modified copper protein, His/Met residue tunneling transition 26—27
Murani, A. 163(155—156) 190
Murphrey, T.H. 233(97) 270
Musin, R.N. 47—49(39) 62(39) 77(39) 83—84(39) 86—88(39) 94
Myers, E.B. 104(33) 186
N-Oscillators bath, quantum probability fluctuation, vibrational energy relaxation 263—265
Nagakura, S. 46(4 6 10 12 18 22) 47(4 22 26—27 29) 53(95) 62(22) 64(22) 93—95
Nagy, S. 233(97) 270
Nakamura, J. 46(18) 47(29) 93—94
Nakano, H. 104(37) 109(37) 111(37) 121(37) 142(37) 144(37) 180(37) 186
Nakano, M. 150(124) 176(124) 189
Nanayakkara, A. 26(66) 44
Nandi, R.N. 90(157) 97
Nanometer-sized particles and clusters, magnetization reversal at zero Kelvin 114—135
Nanometer-sized particles and clusters, magnetization reversal at zero Kelvin, nonuniform magnetization reversal 129—135
Nanometer-sized particles and clusters, magnetization reversal at zero Kelvin, uniform rotation (Stoner — Wohlfarth model) 115-129
Nanometer-sized particles and clusters, micro-SQUID mangetometry 104—114
Nanometer-sized particles and clusters, micro-SQUID mangetometry, array schematics 113
Nanometer-sized particles and clusters, micro-SQUID mangetometry, blind mode three-dimensional switching field measurements 111—113
Nanometer-sized particles and clusters, micro-SQUID mangetometry, cold mode magnetization switching measurements 109—111
Nanometer-sized particles and clusters, micro-SQUID mangetometry, critical current magnetization measurements 105—109
Nanometer-sized particles and clusters, micro-SQUID mangetometry, fabrication techniques 105
Nanometer-sized particles and clusters, micro-SQUID mangetometry, future applications 114
Nanometer-sized particles and clusters, micro-SQUID mangetometry, hysteresis loop measurement feedback 109
Nanometer-sized particles and clusters, micro-SQUID mangetometry, scanning microscopy 114
Nanometer-sized particles and clusters, micro-SQUID mangetometry, SQUID configuration selection 104-105
Nanometer-sized particles and clusters, quantum tunneling magnetization reversal 149—183
Nanometer-sized particles and clusters, quantum tunneling magnetization reversal, environmental decoherence effects 165—176
Nanometer-sized particles and clusters, quantum tunneling magnetization reversal, individual single-domain particles 176—183
Nanometer-sized particles and clusters, quantum tunneling magnetization reversal, molecular clusters 150—165
Nanometer-sized particles and clusters, research background 100—102
Nanometer-sized particles and clusters, single-particle measurement techniques 102—114
Nanometer-sized particles and clusters, temperature effects on magnetization reversal 135—149
Nanometer-sized particles and clusters, temperature effects on magnetization reversal, Neel — Brown model 136—138
Nanometer-sized particles and clusters, temperature effects on magnetization reversal, Neel — Brown model, cobalt cluster applications 144—146
Nanometer-sized particles and clusters, temperature effects on magnetization reversal, Neel — Brown model, deviations 147—149
Nanometer-sized particles and clusters, temperature effects on magnetization reversal, Neel — Brown model, nanoparticle applications 142—144
Nanometer-sized particles and clusters, temperature effects on magnetization reversal, Neel — Brown model, nickel wire applications 146—147
Nanometer-sized particles and clusters, temperature effects on magnetization reversal, Neel — Brown model, switching field measurements 140- 141
Nanometer-sized particles and clusters, temperature effects on magnetization reversal, Neel — Brown model, telegraph noise measurements 141- 142
Nanometer-sized particles and clusters, temperature effects on magnetization reversal, Neel — Brown model, waiting time measurements 138—140
Neel — Brown model, thermal-dependent magnetization reversal, nanometer-sized particles and clusters 136—138
Neel — Brown model, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, cobalt cluster applications 144—146
Neel — Brown model, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, deviations from 147—149
Neel — Brown model, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, nanoparticle applications 142—144
Neel — Brown model, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, nickel wire applications 146—147
Neel — Brown model, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, switching field measurements 140—141
Neel — Brown model, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, telegraph noise measurements 141—142
Neel — Brown model, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, waiting time measurements 138—140
Neel, L. 103(9—10) 115(53) 119(9—10) 135—136(9—10) 179(53) 180(9—10) 185 187
Neusser, H.J. 91(170—171) 97
Newton, M.D. 4(19) 8(19) 11(19 53—54) 13(19) 16(19 62—63) 33(74) 39(79) 42—44
Nickel wires, magnetic quantum tunneling, single-domain nanoparticles and wires, very low temperatures 179—181
Nickel wires, nonuniform zero Kelvin magnetization reversal, curling mechanisms 129-133
Nickel wires, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model 146—147
Nicolis, G. 49(58) 51(58) 94
Nitzan, A. 3(16) 42 206(84) 270
Nogar, N.S. 88(131) 96
Noise kernel, vibrational energy relaxation, influence functional theory 225—226
Nonadiabatic electron transfer see also "Long-distance electron tunneling"
Nonlinear couplings, vibrational energy relaxation, perturbative influence functional 210-217
Nonorthogonality, one-electron long-distance tunneling, tunneling matrix element, very large systems 7—8
Nonuniform zero Kelvin magnetization reversal, nanometer-sized particles and clusters 129—135
Nonuniform zero Kelvin magnetization reversal, nanometer-sized particles and clusters, curling 129—133
Nonuniform zero Kelvin magnetization reversal, nanometer-sized particles and clusters, domain wall nucleation and annihilation 133—135
Not-switching probability, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model 142—144
Novak, F.A. 49(81) 51(81) 95
Novak, M.A. 150(111 113 121) 154(113) 176(121) 188—189
Novotny, M.A. 142(97) 188
Nowak, U. 142(100) 188
Nozieres, J.-P. 113(49) 121(49) 186
Nuclear angular momentum, singlet-triplet (S-T) conversion, Zeeman interaction operator 67—68
Nuclear magnetic moment, Landau — Zener tunneling, environmental decoherence 173-175
Nucleation mechanisms, nonuniform zero Kelvin magnetization reversal 133—135
Numerical diagonalization, magnetic quantum tunneling, splitting oscillations 163—165
O'Barr, R. 133(78) 187
O'Handley, R.C. 126(63) 187
Oblate symmetric top (OST), singlet-triplet (S-T) conversion, magnet field interaction 68—78
Oblate symmetric top (OST), singlet-triplet (S-T) conversion, triplet-state wave functions, magnetic field 80—82
Ochi, N. 88(136) 89(146) 96—97
Ohm, T. 150(116 118) 155(118 129) 159(129) 165(116 118) 168(118 129) 161—162 189—190
Ohmic damping, magnetic quantum tunneling, single-domain nanoparticles 178
Ohta, K. 16(63) 44
Ohta, N. 46(15) 47(15—16 47—50) 48(16 47 49—50) 90(15—16 47—50) 92(16 50 176—180) 93—94 97
Okada, A. 3—4(14) 42
Okada, I. 200(48) 269
Okazaki, S. 195(28) 196(41—43) 197(44) 200(48) 207(28) 210(28) 233(43) 238(41—43 99) 239(101) 241(42 99) 246(28) 251(44) 253(44) 255(44) 268—270
One-electron theory, long-distance electron tunneling, interatomic currents and paths 9—12
One-electron theory, long-distance electron tunneling, protein pruning 8—9
One-electron theory, long-distance electron tunneling, tunneling matrix element, very large systems 6—8
One-electron theory, Ruthenium-modified copper protein, electron transfer 22—24
One-harmonic-oscillator bath coupling, quantum probability fluctuation, vibrational energy relaxation 252-261
One-harmonic-oscillator bath coupling, quantum probability fluctuation, vibrational energy relaxation, classical limit 255—257
One-harmonic-oscillator bath coupling, quantum probability fluctuation, vibrational energy relaxation, exact vibration solution 253—255
One-harmonic-oscillator bath coupling, quantum probability fluctuation, vibrational energy relaxation, high-temperature behavior 257—258
One-harmonic-oscillator bath coupling, quantum probability fluctuation, vibrational energy relaxation, low-temperature behavior 258—260
One-harmonic-oscillator bath coupling, quantum probability fluctuation, vibrational energy relaxation, numerical applications 260—261
Onsager, L. 26(67) 44
Onuchic, J.N. 4—5(22 24) 8(24) 9(22 24) 34(24) 36(24) 36(24) 42
Optically detected EPR (OD EPR) spectra, oxalylfluoride, magnetic field influence on excited-state dynamics 85—86
Optically detected EPR (OD EPR) spectra, triplet states 49
Ortiz, J.V. 26(66) 44
Ostlund, N.S. 13(58) 15(58) 19(58) 44
Ottinger, Ch. 46(9) 93
Ounadjela, K. 131—132(73) 187
Owrutsky, J.C. 192(7) 267
Oxalylfluoride, magnetic field influence on excited-state dynamics 82—88
Oxalylfluoride, magnetic field influence on excited-state dynamics, phosphorescence 84—85
Oxalylfluoride, magnetic field influence on excited-state dynamics, decay mechanisms 87—88
Oxalylfluoride, magnetic field influence on excited-state dynamics, experimental data analysis 86—87
Oxalylfluoride, magnetic field influence on excited-state dynamics, field dependence 83
Oxalylfluoride, magnetic field influence on excited-state dynamics, fluorescence decay 83—84
| Oxalylfluoride, magnetic field influence on excited-state dynamics, J-dependence 84
Oxalylfluoride, magnetic field influence on excited-state dynamics, OD EPR effect 85—86
Oxalylfluoride, magnetic field influence on excited-state dynamics, pressure dependence 83
Oxalylfluoride, magnetic field influence on excited-state dynamics, pyrazine effects 91—92
Oxalylfluoride, singlet-triplet (S-T) conversion, magnet field interaction 71—73
Oxtoby, D.W. 194(18) 202(59) 203—204(18) 268—269
Ozaki, M. 103(16 19) 142(19) 185
Paddon-Row, M.N. 11(55—56) 44
Page, C.C. 2—4(2) 40(2) 41
Pak, Y. 195—196(31) 227(31) 238(31) 268
Palke, W.E. 26(70) 44
Palpant, B. 121(60) 187
Pannetier, B. 105(46) 114(46) 186
Pardi, L. 152(127) 189
Park, D.K. 163(152) 190
Parkin, S.S.P. 104(30) 186
Parmenter, R.H. 31(73) 44
Parr, R.G. 15(60) 44
Partial two-phonon spectral density, ions in aqueous solution, relaxation 247
Pascard, H. 104(36) 109(36) 111(36) 121(36) 142(36) 144(36) 180(36) 186
Pastor, G.M. 101(4) 185
Path integral influence functional theory, ions in aqueous solution, relaxation times 238—241
Path integral influence functional theory, vibrational energy relaxation 206—227
Path integral influence functional theory, vibrational energy relaxation, centroid molecular dynamics 226—227
Path integral influence functional theory, vibrational energy relaxation, influence functional theory 207—226
Path integral influence functional theory, vibrational energy relaxation, influence functional theory, general principles 208—209
Path integral influence functional theory, vibrational energy relaxation, influence functional theory, perturbative influence, nonlinear couplings 210—217
Path integral influence functional theory, vibrational energy relaxation, influence functional theory, time-dependent transition probability 217- 223
Path integral influence functional theory, vibrational energy relaxation, theoretical background 195
Pauli's master equation, vibrational energy relaxation 194
Pauli's master equation, vibrational energy relaxation, Fermi's golden rule, force autocorrelation function 205—206
Pauli's master equation, vibrational energy relaxation, time-dependent transition probability 218- 223
Paulsen, C. 150(116 118 121) 155(118 129) 159(129) 160(144) 165(116 118) 168(118 129 144 161) 170(144) 172(166) 176(121 170) 189—190
Paz, J.P. 211(91) 225(91 96) 270
Peaker, A.R. 103(23) 179(23) 185
Pearson, D.J. 104(41) 161(41) 186
Pellarin, M. 121(60) 187
Peng, C.Y. 26(66) 44
Perenboom, J.A.A.J. 150(119) 154(119) 189
Perez, A. 104(34 39) 109(39) 121(39 60—61) 123(61) 142(39) 186—187
Perez, J.P. 104(34) 186
Perrier, P. 105—106(43) 114(43) 186
Perturbation theory, one-electron long-distance tunneling, tunneling matrix element, very large systems 6—8
Perturbative influence functional, vibrational energy relaxation, nonlinear couplings 210—217
Peterson, J.R. 90(147) 97
Petersson, G.A. 26(66) 44
Petroff, F. 104(32) 186
Peyroula, E.P. 47(35) 94
Pfeiffer, H. 119(57—58) 187
Phonon-mediated relaxation, environmental decoherence effects 165
Phonon-mediated relaxation, vibrational energy relaxation, perturbative influence functional, nonlinear couplings 210—217
Pick, S. 101(4) 185
Piraux, L. 131—132(73) 187
Pohl, K. 151—152(125) 189
Pohorille, A. 237(98) 241(98) 270
Poisson equation, tunneling current calculations 39
Polarization cloud dynamics, calculation techniques 36—37
Polarization cloud dynamics, correlation effects 40—41
Poliak, M. 3(12) 42
Pollard, W.T. 3(13) 42
Pontillon, Y. 151—152(109) 188
Pople, J.A. 26(66) 44
Population dynamics, many-electron tunneling, interatomic currents and paths 20—21
Portal, J.C. 103(23) 179(23) 185
Powell, A.K. 150(123) 176(123) 189
Pratt, D.W. 46(14) 47(14 43—45) 90(14 43—45) 91(43—45 169) 93—94 97
Pratt, L.R. 237(98) 241(98) 270
Pressure dependence, oxalylfluoride, magnetic field influence on excited-state dynamics 83—84
Preston, R.K. 195(37) 268
Prevel, B. 121(60) 187
Price, D.J. 150(123) 176(123) 189
Prichard, D.G. 90(156—157) 97
Prokof'ev — Stamp theory, environmental decoherence effects 165—166
Prokof'ev — Stamp theory, environmental decoherence effects, intermolecular dipole interaction 168-170
Prokof'ev — Stamp theory, Landau — Zener tunneling, iron molecular clusters 160
Prokof'ev, N.V. 160(142) 165(159—160) 176(172) 189—190
Prolate symmetric top (PST), singlet-triplet (S-T) conversion, acetylene magnetic effects 88—90
Prolate symmetric top (PST), singlet-triplet (S-T) conversion, magnet field interaction 68—78
Prolate symmetric top (PST), singlet-triplet (S-T) conversion, triplet-state wave functions, magnetic field 79—82
Protein complexes, long-distance electron tunneling 2—3
Protein complexes, one-electron long-distance tunneling, tunneling matrix element, very large systems 6—8
Protein complexes, Ruthenium-modified copper protein, electron transfer 21—24
Protein dynamics, electron-phonon coupling 39—40
Protein pruning, one-electron long-distance tunneling, techniques 8—9
Protein pruning, one-electron long-distance tunneling, tunneling matrix element, very large systems 6—8
Protein pruning, Ruthenium-modified copper protein, electron transfer 22—24
Protein pruning, Ruthenium-modified copper protein, His/Met residue tunneling transition 24—27
Pu, F.-C. 163(152) 190
Pugliano, N. 203(62) 269
Pullman, B. 206(78) 218(78) 269
Pyrazine, singlet-triplet (S-T) conversion, magnet field interaction 76—78
Pyrazine, singlet-triplet (S-T) conversion, magnetic field influence on excited-state dynamics 90—92
Pyrimidine, magnetic field influence on excited- state dynamics 92
Quantization techniques, magnetic quantum tunneling, single-domain nanoparticles 181—183
Quantization techniques, many-electron tunneling, current density operator 13
Quantization techniques, tunneling flow vortices 27—32
Quantum coherence, magnetization of molecular clusters 175
Quantum flux topology, Ruthenium-modified copper protein, His/Met residue tunneling transition 26—27
Quantum probability fluctuation, vibrational energy relaxation 247—265
Quantum probability fluctuation, vibrational energy relaxation, density matrix moments 248—252
Quantum probability fluctuation, vibrational energy relaxation, distribution function 261—263
Quantum probability fluctuation, vibrational energy relaxation, N-oscillators bath 263—265
Quantum probability fluctuation, vibrational energy relaxation, one-harmonic-oscillator bath coupling 252—261
Quantum probability fluctuation, vibrational energy relaxation, one-harmonic-oscillator bath coupling, classical limit 255—257
Quantum probability fluctuation, vibrational energy relaxation, one-harmonic-oscillator bath coupling, exact vibration solution 253—255
Quantum probability fluctuation, vibrational energy relaxation, one-harmonic-oscillator bath coupling, high-temperature behavior 257—258
Quantum probability fluctuation, vibrational energy relaxation, one-harmonic-oscillator bath coupling, low-temperature behavior 258—260
Quantum probability fluctuation, vibrational energy relaxation, one-harmonic-oscillator bath coupling, numerical applications 260—261
Quantum tunneling, environmental decoherence effects 165-176
Quantum tunneling, Landau — Zener tunneling, iron molecular clusters 154—160
Quantum tunneling, magnetization reversal 149—183
Quantum tunneling, magnetization reversal, cold mode techniques 110—111
Quantum tunneling, magnetization reversal, individual single-domain particles 176—183
Quantum tunneling, molecular clusters, anisotropy in iron molecules 150—165
Quantum tunneling, molecular clusters, Landau — Zener tunneling 154—160
Quantum tunneling, molecular clusters, splitting oscillations 160—165
Quenching mechanisms, acetylene magnetic effects 89—90
Quinones, E. 89(143 145) 90(143) 97
Radford, H.E. 49(62) 51(62) 95
Raftery, D. 192(7) 267
Raghavachari, K. 26(66) 44
Rakoto, H. 147(102) 188
Ralph, D.C. 104(33) 186
Ramires, B.E. 2—3(4) 7(4) 33(4) 41
Ramirez, R. 142(98) 188
Ramsay, D.A. 47(28) 94
Ratner, M. 3(16) 6(42) 42—43
Ravet, M.F. 103(17) 185
Raynes, W.T. 54—55(100) 54—55(107) 96
Real-space (grid) calculations, electron tunneling 37—38
Redox complexes, long-distance electron tunneling 2—4
Redox complexes, one-electron long-distance tunneling, protein pruning techniques 8—9
Regan, J.J. 4—5(24) 8—9(24) 34(24) 36(24) 39(24) 42
Reimers, J.R. 200(50) 269
Relaxation mechanism, ions, aqueous solution 241—247
Relaxation mechanism, ions, aqueous solution, bath mode analysis 247
Relaxation mechanism, ions, aqueous solution, spectral densities 242—243
Relaxation mechanism, ions, aqueous solution, state densities 241—242
Relaxation mechanism, ions, aqueous solution, survival probabilities 243—247
Relaxation time, ions in aqueous solution 238—241
Renard, J.P. 103(17) 185
Replogle, E.S. 26(66) 44
Respaud, M. 147(102) 188
Ressouche, E. 151—152(109) 188
Rettori, A. 168(163) 190
Rettschnick, P.H. 54—55(106) 96
Rey, R. 196(40) 205(40 72) 238(40) 268—269
Ribeiro, M.C.C. 267(110) 270
Rice, S.A. 49(57—59 73 75 81) 51(57—59 73 75 81) 52(75) 94—95
Richards, H.L. 142(97) 188
|
|
|
Ðåêëàìà |
|
|
|