Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 118
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 118



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in Chemical Physics. Volume 118

Àâòîðû: Prigogine I. (ed.), Rice S.A. (ed.)

Àííîòàöèÿ:

This is the only series of volumes available that represents the cutting edge of research relative to advances in chemical physics. Provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. Continues to report recent advances with significant, up-to-date chapters. Contributing authors are internationally recognized researchers.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 304

Äîáàâëåíà â êàòàëîã: 08.12.2013

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Molecular clusters, magnetic quantum tunneling      150—165
Molecular clusters, magnetic quantum tunneling, anisotropy in iron molecules $(Fe_{8})$      150-154
Molecular clusters, magnetic quantum tunneling, environmental decoherence effects      165—176
Molecular clusters, magnetic quantum tunneling, Landau — Zener tunneling in iron molecules $(Fe_{8})$      154-160
Molecular clusters, magnetic quantum tunneling, splitting oscillations      160—165
Molecular clusters, vibrational energy relaxation, one-harmonic-oscillator bath model      252—261
Molecular clusters, vibrational energy relaxation, one-harmonic-oscillator bath model, classical limit      255—257
Molecular clusters, vibrational energy relaxation, one-harmonic-oscillator bath model, exact solution      253—255
Molecular clusters, vibrational energy relaxation, one-harmonic-oscillator bath model, high-temperature behavior      257—258
Molecular clusters, vibrational energy relaxation, one-harmonic-oscillator bath model, low-temperature behavior      258—260
Molecular clusters, vibrational energy relaxation, one-harmonic-oscillator bath model, numerical models      260—261
Molecular dynamics, $CN{-}$ ions in aqueous solution, relaxation times      238—241
Molecular dynamics, classical approaches      200—201
Molecular dynamics, vibrational energy relaxation      193—194
Molecular orbitals, many-electron tunneling, Hartree — Fock approximation      16—18
Molecular orbitals, tunneling current calculations, density functional theory (DFT)      39
Molecular orbitals, tunneling flow vortices      28—32
Molin, Yu.N.      46(5) 47(5 37—38) 48—49 85—87(37—38) 93—94
Moller, G.      82(121) 96
Monte Carlo simulations, vibrational energy relaxation      193—194
Monte Carlo simulations, vibrational energy relaxation, centroid molecular dynamics      227
Monte Carlo simulations, vibrational energy relaxation, time-dependent transition probability      218—223
Montgomery, J.A.      26(66) 44 90(147) 97
Monts, D.I.      82(120) 96
Moore, C.B.      88(131) 96
Moore, P.      206(82) 270
Morita, A.      205(74) 269
Morokuma, K.      90(154—155) 97 200(49) 269
Morrish, A.H.      103(11) 185
Morse oscillator, vibrational energy relaxation Hamiltonians      199—200
Morse oscillator, vibrational energy relaxation, Fermi's golden rule, force autocorrelation function      205—206
Moser, C.C.      2—4(2—3) 40(2) 41
Mower, L.      49(76) 51(76) 95
Mueller-Kirsten, H.J.W.      163(152) 190
Muenter, J.S.      90(156—157) 97
Mujica, V.      3(16) 6(42) 42—43
Mukamel, S.      3—4(14) 42 206(80) 218(80) 269
Mulliken population operators, many-electron tunneling      18—20
Mulliken population operators, Ruthenium-modified copper protein, His/Met residue tunneling transition      26—27
Murani, A.      163(155—156) 190
Murphrey, T.H.      233(97) 270
Musin, R.N.      47—49(39) 62(39) 77(39) 83—84(39) 86—88(39) 94
Myers, E.B.      104(33) 186
N-Oscillators bath, quantum probability fluctuation, vibrational energy relaxation      263—265
Nagakura, S.      46(4 6 10 12 18 22) 47(4 22 26—27 29) 53(95) 62(22) 64(22) 93—95
Nagy, S.      233(97) 270
Nakamura, J.      46(18) 47(29) 93—94
Nakano, H.      104(37) 109(37) 111(37) 121(37) 142(37) 144(37) 180(37) 186
Nakano, M.      150(124) 176(124) 189
Nanayakkara, A.      26(66) 44
Nandi, R.N.      90(157) 97
Nanometer-sized particles and clusters, magnetization reversal at zero Kelvin      114—135
Nanometer-sized particles and clusters, magnetization reversal at zero Kelvin, nonuniform magnetization reversal      129—135
Nanometer-sized particles and clusters, magnetization reversal at zero Kelvin, uniform rotation (Stoner — Wohlfarth model)      115-129
Nanometer-sized particles and clusters, micro-SQUID mangetometry      104—114
Nanometer-sized particles and clusters, micro-SQUID mangetometry, array schematics      113
Nanometer-sized particles and clusters, micro-SQUID mangetometry, blind mode three-dimensional switching field measurements      111—113
Nanometer-sized particles and clusters, micro-SQUID mangetometry, cold mode magnetization switching measurements      109—111
Nanometer-sized particles and clusters, micro-SQUID mangetometry, critical current magnetization measurements      105—109
Nanometer-sized particles and clusters, micro-SQUID mangetometry, fabrication techniques      105
Nanometer-sized particles and clusters, micro-SQUID mangetometry, future applications      114
Nanometer-sized particles and clusters, micro-SQUID mangetometry, hysteresis loop measurement feedback      109
Nanometer-sized particles and clusters, micro-SQUID mangetometry, scanning microscopy      114
Nanometer-sized particles and clusters, micro-SQUID mangetometry, SQUID configuration selection      104-105
Nanometer-sized particles and clusters, quantum tunneling magnetization reversal      149—183
Nanometer-sized particles and clusters, quantum tunneling magnetization reversal, environmental decoherence effects      165—176
Nanometer-sized particles and clusters, quantum tunneling magnetization reversal, individual single-domain particles      176—183
Nanometer-sized particles and clusters, quantum tunneling magnetization reversal, molecular clusters      150—165
Nanometer-sized particles and clusters, research background      100—102
Nanometer-sized particles and clusters, single-particle measurement techniques      102—114
Nanometer-sized particles and clusters, temperature effects on magnetization reversal      135—149
Nanometer-sized particles and clusters, temperature effects on magnetization reversal, Neel — Brown model      136—138
Nanometer-sized particles and clusters, temperature effects on magnetization reversal, Neel — Brown model, cobalt cluster applications      144—146
Nanometer-sized particles and clusters, temperature effects on magnetization reversal, Neel — Brown model, deviations      147—149
Nanometer-sized particles and clusters, temperature effects on magnetization reversal, Neel — Brown model, nanoparticle applications      142—144
Nanometer-sized particles and clusters, temperature effects on magnetization reversal, Neel — Brown model, nickel wire applications      146—147
Nanometer-sized particles and clusters, temperature effects on magnetization reversal, Neel — Brown model, switching field measurements      140- 141
Nanometer-sized particles and clusters, temperature effects on magnetization reversal, Neel — Brown model, telegraph noise measurements      141- 142
Nanometer-sized particles and clusters, temperature effects on magnetization reversal, Neel — Brown model, waiting time measurements      138—140
Neel — Brown model, thermal-dependent magnetization reversal, nanometer-sized particles and clusters      136—138
Neel — Brown model, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, cobalt cluster applications      144—146
Neel — Brown model, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, deviations from      147—149
Neel — Brown model, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, nanoparticle applications      142—144
Neel — Brown model, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, nickel wire applications      146—147
Neel — Brown model, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, switching field measurements      140—141
Neel — Brown model, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, telegraph noise measurements      141—142
Neel — Brown model, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, waiting time measurements      138—140
Neel, L.      103(9—10) 115(53) 119(9—10) 135—136(9—10) 179(53) 180(9—10) 185 187
Neusser, H.J.      91(170—171) 97
Newton, M.D.      4(19) 8(19) 11(19 53—54) 13(19) 16(19 62—63) 33(74) 39(79) 42—44
Nickel wires, magnetic quantum tunneling, single-domain nanoparticles and wires, very low temperatures      179—181
Nickel wires, nonuniform zero Kelvin magnetization reversal, curling mechanisms      129-133
Nickel wires, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model      146—147
Nicolis, G.      49(58) 51(58) 94
Nitzan, A.      3(16) 42 206(84) 270
Nogar, N.S.      88(131) 96
Noise kernel, vibrational energy relaxation, influence functional theory      225—226
Nonadiabatic electron transfer      see also "Long-distance electron tunneling"
Nonlinear couplings, vibrational energy relaxation, perturbative influence functional      210-217
Nonorthogonality, one-electron long-distance tunneling, tunneling matrix element, very large systems      7—8
Nonuniform zero Kelvin magnetization reversal, nanometer-sized particles and clusters      129—135
Nonuniform zero Kelvin magnetization reversal, nanometer-sized particles and clusters, curling      129—133
Nonuniform zero Kelvin magnetization reversal, nanometer-sized particles and clusters, domain wall nucleation and annihilation      133—135
Not-switching probability, thermal-dependent magnetization reversal, nanometer-sized particles and clusters, Neel — Brown model      142—144
Novak, F.A.      49(81) 51(81) 95
Novak, M.A.      150(111 113 121) 154(113) 176(121) 188—189
Novotny, M.A.      142(97) 188
Nowak, U.      142(100) 188
Nozieres, J.-P.      113(49) 121(49) 186
Nuclear angular momentum, singlet-triplet (S-T) conversion, Zeeman interaction operator      67—68
Nuclear magnetic moment, Landau — Zener tunneling, environmental decoherence      173-175
Nucleation mechanisms, nonuniform zero Kelvin magnetization reversal      133—135
Numerical diagonalization, magnetic quantum tunneling, splitting oscillations      163—165
O'Barr, R.      133(78) 187
O'Handley, R.C.      126(63) 187
Oblate symmetric top (OST), singlet-triplet (S-T) conversion, magnet field interaction      68—78
Oblate symmetric top (OST), singlet-triplet (S-T) conversion, triplet-state wave functions, magnetic field      80—82
Ochi, N.      88(136) 89(146) 96—97
Ohm, T.      150(116 118) 155(118 129) 159(129) 165(116 118) 168(118 129) 161—162 189—190
Ohmic damping, magnetic quantum tunneling, single-domain nanoparticles      178
Ohta, K.      16(63) 44
Ohta, N.      46(15) 47(15—16 47—50) 48(16 47 49—50) 90(15—16 47—50) 92(16 50 176—180) 93—94 97
Okada, A.      3—4(14) 42
Okada, I.      200(48) 269
Okazaki, S.      195(28) 196(41—43) 197(44) 200(48) 207(28) 210(28) 233(43) 238(41—43 99) 239(101) 241(42 99) 246(28) 251(44) 253(44) 255(44) 268—270
One-electron theory, long-distance electron tunneling, interatomic currents and paths      9—12
One-electron theory, long-distance electron tunneling, protein pruning      8—9
One-electron theory, long-distance electron tunneling, tunneling matrix element, very large systems      6—8
One-electron theory, Ruthenium-modified copper protein, electron transfer      22—24
One-harmonic-oscillator bath coupling, quantum probability fluctuation, vibrational energy relaxation      252-261
One-harmonic-oscillator bath coupling, quantum probability fluctuation, vibrational energy relaxation, classical limit      255—257
One-harmonic-oscillator bath coupling, quantum probability fluctuation, vibrational energy relaxation, exact vibration solution      253—255
One-harmonic-oscillator bath coupling, quantum probability fluctuation, vibrational energy relaxation, high-temperature behavior      257—258
One-harmonic-oscillator bath coupling, quantum probability fluctuation, vibrational energy relaxation, low-temperature behavior      258—260
One-harmonic-oscillator bath coupling, quantum probability fluctuation, vibrational energy relaxation, numerical applications      260—261
Onsager, L.      26(67) 44
Onuchic, J.N.      4—5(22 24) 8(24) 9(22 24) 34(24) 36(24) 36(24) 42
Optically detected EPR (OD EPR) spectra, oxalylfluoride, magnetic field influence on excited-state dynamics      85—86
Optically detected EPR (OD EPR) spectra, triplet states      49
Ortiz, J.V.      26(66) 44
Ostlund, N.S.      13(58) 15(58) 19(58) 44
Ottinger, Ch.      46(9) 93
Ounadjela, K.      131—132(73) 187
Owrutsky, J.C.      192(7) 267
Oxalylfluoride, magnetic field influence on excited-state dynamics      82—88
Oxalylfluoride, magnetic field influence on excited-state dynamics, $(COF)_{2}$ phosphorescence      84—85
Oxalylfluoride, magnetic field influence on excited-state dynamics, decay mechanisms      87—88
Oxalylfluoride, magnetic field influence on excited-state dynamics, experimental data analysis      86—87
Oxalylfluoride, magnetic field influence on excited-state dynamics, field dependence      83
Oxalylfluoride, magnetic field influence on excited-state dynamics, fluorescence decay      83—84
Oxalylfluoride, magnetic field influence on excited-state dynamics, J-dependence      84
Oxalylfluoride, magnetic field influence on excited-state dynamics, OD EPR effect      85—86
Oxalylfluoride, magnetic field influence on excited-state dynamics, pressure dependence      83
Oxalylfluoride, magnetic field influence on excited-state dynamics, pyrazine effects      91—92
Oxalylfluoride, singlet-triplet (S-T) conversion, magnet field interaction      71—73
Oxtoby, D.W.      194(18) 202(59) 203—204(18) 268—269
Ozaki, M.      103(16 19) 142(19) 185
Paddon-Row, M.N.      11(55—56) 44
Page, C.C.      2—4(2) 40(2) 41
Pak, Y.      195—196(31) 227(31) 238(31) 268
Palke, W.E.      26(70) 44
Palpant, B.      121(60) 187
Pannetier, B.      105(46) 114(46) 186
Pardi, L.      152(127) 189
Park, D.K.      163(152) 190
Parkin, S.S.P.      104(30) 186
Parmenter, R.H.      31(73) 44
Parr, R.G.      15(60) 44
Partial two-phonon spectral density, $CN^{-}$ ions in aqueous solution, relaxation      247
Pascard, H.      104(36) 109(36) 111(36) 121(36) 142(36) 144(36) 180(36) 186
Pastor, G.M.      101(4) 185
Path integral influence functional theory, $CN^{-}$ ions in aqueous solution, relaxation times      238—241
Path integral influence functional theory, vibrational energy relaxation      206—227
Path integral influence functional theory, vibrational energy relaxation, centroid molecular dynamics      226—227
Path integral influence functional theory, vibrational energy relaxation, influence functional theory      207—226
Path integral influence functional theory, vibrational energy relaxation, influence functional theory, general principles      208—209
Path integral influence functional theory, vibrational energy relaxation, influence functional theory, perturbative influence, nonlinear couplings      210—217
Path integral influence functional theory, vibrational energy relaxation, influence functional theory, time-dependent transition probability      217- 223
Path integral influence functional theory, vibrational energy relaxation, theoretical background      195
Pauli's master equation, vibrational energy relaxation      194
Pauli's master equation, vibrational energy relaxation, Fermi's golden rule, force autocorrelation function      205—206
Pauli's master equation, vibrational energy relaxation, time-dependent transition probability      218- 223
Paulsen, C.      150(116 118 121) 155(118 129) 159(129) 160(144) 165(116 118) 168(118 129 144 161) 170(144) 172(166) 176(121 170) 189—190
Paz, J.P.      211(91) 225(91 96) 270
Peaker, A.R.      103(23) 179(23) 185
Pearson, D.J.      104(41) 161(41) 186
Pellarin, M.      121(60) 187
Peng, C.Y.      26(66) 44
Perenboom, J.A.A.J.      150(119) 154(119) 189
Perez, A.      104(34 39) 109(39) 121(39 60—61) 123(61) 142(39) 186—187
Perez, J.P.      104(34) 186
Perrier, P.      105—106(43) 114(43) 186
Perturbation theory, one-electron long-distance tunneling, tunneling matrix element, very large systems      6—8
Perturbative influence functional, vibrational energy relaxation, nonlinear couplings      210—217
Peterson, J.R.      90(147) 97
Petersson, G.A.      26(66) 44
Petroff, F.      104(32) 186
Peyroula, E.P.      47(35) 94
Pfeiffer, H.      119(57—58) 187
Phonon-mediated relaxation, environmental decoherence effects      165
Phonon-mediated relaxation, vibrational energy relaxation, perturbative influence functional, nonlinear couplings      210—217
Pick, S.      101(4) 185
Piraux, L.      131—132(73) 187
Pohl, K.      151—152(125) 189
Pohorille, A.      237(98) 241(98) 270
Poisson equation, tunneling current calculations      39
Polarization cloud dynamics, calculation techniques      36—37
Polarization cloud dynamics, correlation effects      40—41
Poliak, M.      3(12) 42
Pollard, W.T.      3(13) 42
Pontillon, Y.      151—152(109) 188
Pople, J.A.      26(66) 44
Population dynamics, many-electron tunneling, interatomic currents and paths      20—21
Portal, J.C.      103(23) 179(23) 185
Powell, A.K.      150(123) 176(123) 189
Pratt, D.W.      46(14) 47(14 43—45) 90(14 43—45) 91(43—45 169) 93—94 97
Pratt, L.R.      237(98) 241(98) 270
Pressure dependence, oxalylfluoride, magnetic field influence on excited-state dynamics      83—84
Preston, R.K.      195(37) 268
Prevel, B.      121(60) 187
Price, D.J.      150(123) 176(123) 189
Prichard, D.G.      90(156—157) 97
Prokof'ev — Stamp theory, environmental decoherence effects      165—166
Prokof'ev — Stamp theory, environmental decoherence effects, intermolecular dipole interaction      168-170
Prokof'ev — Stamp theory, Landau — Zener tunneling, iron $(Fe_{8})$ molecular clusters      160
Prokof'ev, N.V.      160(142) 165(159—160) 176(172) 189—190
Prolate symmetric top (PST), singlet-triplet (S-T) conversion, acetylene magnetic effects      88—90
Prolate symmetric top (PST), singlet-triplet (S-T) conversion, magnet field interaction      68—78
Prolate symmetric top (PST), singlet-triplet (S-T) conversion, triplet-state wave functions, magnetic field      79—82
Protein complexes, long-distance electron tunneling      2—3
Protein complexes, one-electron long-distance tunneling, tunneling matrix element, very large systems      6—8
Protein complexes, Ruthenium-modified copper protein, electron transfer      21—24
Protein dynamics, electron-phonon coupling      39—40
Protein pruning, one-electron long-distance tunneling, techniques      8—9
Protein pruning, one-electron long-distance tunneling, tunneling matrix element, very large systems      6—8
Protein pruning, Ruthenium-modified copper protein, electron transfer      22—24
Protein pruning, Ruthenium-modified copper protein, His/Met residue tunneling transition      24—27
Pu, F.-C.      163(152) 190
Pugliano, N.      203(62) 269
Pullman, B.      206(78) 218(78) 269
Pyrazine, singlet-triplet (S-T) conversion, magnet field interaction      76—78
Pyrazine, singlet-triplet (S-T) conversion, magnetic field influence on excited-state dynamics      90—92
Pyrimidine, magnetic field influence on excited- state dynamics      92
Quantization techniques, magnetic quantum tunneling, single-domain nanoparticles      181—183
Quantization techniques, many-electron tunneling, current density operator      13
Quantization techniques, tunneling flow vortices      27—32
Quantum coherence, magnetization of molecular clusters      175
Quantum flux topology, Ruthenium-modified copper protein, His/Met residue tunneling transition      26—27
Quantum probability fluctuation, vibrational energy relaxation      247—265
Quantum probability fluctuation, vibrational energy relaxation, density matrix moments      248—252
Quantum probability fluctuation, vibrational energy relaxation, distribution function      261—263
Quantum probability fluctuation, vibrational energy relaxation, N-oscillators bath      263—265
Quantum probability fluctuation, vibrational energy relaxation, one-harmonic-oscillator bath coupling      252—261
Quantum probability fluctuation, vibrational energy relaxation, one-harmonic-oscillator bath coupling, classical limit      255—257
Quantum probability fluctuation, vibrational energy relaxation, one-harmonic-oscillator bath coupling, exact vibration solution      253—255
Quantum probability fluctuation, vibrational energy relaxation, one-harmonic-oscillator bath coupling, high-temperature behavior      257—258
Quantum probability fluctuation, vibrational energy relaxation, one-harmonic-oscillator bath coupling, low-temperature behavior      258—260
Quantum probability fluctuation, vibrational energy relaxation, one-harmonic-oscillator bath coupling, numerical applications      260—261
Quantum tunneling, environmental decoherence effects      165-176
Quantum tunneling, Landau — Zener tunneling, iron $(Fe_{8})$ molecular clusters      154—160
Quantum tunneling, magnetization reversal      149—183
Quantum tunneling, magnetization reversal, cold mode techniques      110—111
Quantum tunneling, magnetization reversal, individual single-domain particles      176—183
Quantum tunneling, molecular clusters, anisotropy in iron molecules      150—165
Quantum tunneling, molecular clusters, Landau — Zener tunneling      154—160
Quantum tunneling, molecular clusters, splitting oscillations      160—165
Quenching mechanisms, acetylene magnetic effects      89—90
Quinones, E.      89(143 145) 90(143) 97
Radford, H.E.      49(62) 51(62) 95
Raftery, D.      192(7) 267
Raghavachari, K.      26(66) 44
Rakoto, H.      147(102) 188
Ralph, D.C.      104(33) 186
Ramires, B.E.      2—3(4) 7(4) 33(4) 41
Ramirez, R.      142(98) 188
Ramsay, D.A.      47(28) 94
Ratner, M.      3(16) 6(42) 42—43
Ravet, M.F.      103(17) 185
Raynes, W.T.      54—55(100) 54—55(107) 96
Real-space (grid) calculations, electron tunneling      37—38
Redox complexes, long-distance electron tunneling      2—4
Redox complexes, one-electron long-distance tunneling, protein pruning techniques      8—9
Regan, J.J.      4—5(24) 8—9(24) 34(24) 36(24) 39(24) 42
Reimers, J.R.      200(50) 269
Relaxation mechanism, $CN^{-}$ ions, aqueous solution      241—247
Relaxation mechanism, $CN^{-}$ ions, aqueous solution, bath mode analysis      247
Relaxation mechanism, $CN^{-}$ ions, aqueous solution, spectral densities      242—243
Relaxation mechanism, $CN^{-}$ ions, aqueous solution, state densities      241—242
Relaxation mechanism, $CN^{-}$ ions, aqueous solution, survival probabilities      243—247
Relaxation time, $CN^{-}$ ions in aqueous solution      238—241
Renard, J.P.      103(17) 185
Replogle, E.S.      26(66) 44
Respaud, M.      147(102) 188
Ressouche, E.      151—152(109) 188
Rettori, A.      168(163) 190
Rettschnick, P.H.      54—55(106) 96
Rey, R.      196(40) 205(40 72) 238(40) 268—269
Ribeiro, M.C.C.      267(110) 270
Rice, S.A.      49(57—59 73 75 81) 51(57—59 73 75 81) 52(75) 94—95
Richards, H.L.      142(97) 188
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå