|
![blank](/z.gif) |
Àâòîðèçàöèÿ |
|
![blank](/z.gif) |
Ïîèñê ïî óêàçàòåëÿì |
|
![blank](/z.gif) |
|
![blank](/z.gif) |
|
![blank](/z.gif) |
![Êðàñîòà](/img/main/15.jpg) |
|
![blank](/z.gif) |
|
Cox D., Katz S. — Mirror symmetry and algebraic geometry |
|
![blank](/z.gif) |
Ïðåäìåòíûé óêàçàòåëü |
Dubrovin connection, flatness of 240 244
Dubrovin connection, formal 242
Dubrovin connection, homogeneity of 241
Dubrovin connection, potential function of 239
Dubrovin connection, torsion of 240
Dubrovin connection, WDVV equation for 240 241
Dubrovin formalism 234 239—242 244 304
Dubrovin formalism, binary product of 239
Dubrovin formalism, connection of see “Dubrovin connection”
Electromagnetic potential 417
Energy-momentum conservation 424
Energy-momentum tensor 424
Enumerative geometry 16 215 enumerative
Equivariant characteristic class 338
Equivariant Chern class 276 280 366
Equivariant cohomology 27 101
Equivariant cohomology of 277 278 335
Equivariant cohomology, definition of 276
Equivariant cohomology, explanation of parameter h 319
Equivariant cohomology, localization of 277 336 for
Equivariant cohomology, restriction map 343 344
Equivariant hyperplane class 28 101 335 346 366 368
Equivariant hyperplane class of see “ projective equivariant
Equivariant hyperplane class, definition of 277
Equivariant integral 280 335 367 368 373 376 377
Equivariant integral, definition of 279
Equivariant vector bundle 276 298
Euler -function 162 163 165
Euler characteristic 310
Euler class 173 289 351 358 360
Euler class of zero bundle 358 365 372
Euler class, equivariant 276 292 336 338 341 342 344 377
Euler class, equivariant of 285 287—289 291 293 370
Euler class, stack versus coarse moduli space 181 184 302 332 337
Euler data 27 28 345 348—350 380
Euler data, definition of 339
Euler data, examples of see “P and Q”
Euler data, hypergeometric function of 346 (see also “HG of
Euler data, linked 343 345 353 355
Euler data, linked, definition of 342
Euler data, linked, mirror transformation of 348 352 353 381 mirror
Euler data, linked, multiple cover interpretation 343
Euler data, linked, uniqueness theorem for 344 348 353 355 380
Euler integral 160 (see also “GKZ system”)
Euler — Lagrange equation 412—414 418 421 422 424
Euler — Lagrange equation for electricity and magnetism 417
Euler’s constant 162
Evaluation map 172 179 189 205 210 222 298 301 332 357 360 365 375
Excess dimension 308
Excess dimension for moduli of stable maps 182
Excess dimension in intersection theory 182
Excess normal bundle 173 174
Expected dimension in Kuranishi theory 174
Expected dimension of moduli of stable maps see “Stable maps moduli
Expected dimension of zero locus 173
Extremal transition 143 144 146 405 406
Extremal transition, compatibility with mirror symmetry 144 148
Extremal transition, dual 147 148 158 159 405
Extremal transition, example of 146—148 158
Extremal transition, mirror see “Extremal transition dual”
Extremal transition, relation to SCFT moduli 144
Extremal transition, toric 145
Extremal transition, Type I 143 145
Extremal transition, Type II 143
Extremal transition, Type III 143 145
F-theory 404
Face of a cone 31
Fan 31 (see also “Projective subdivision”)
Fan, complete 32
Fan, flip of see “Flip”
Fan, Grobner see “Grobner fan”
Fan, secondary see “Secondary fan”
Fan, simplicial 32
Fan, smooth 32
Fan, support of 31
Fan, supported on a linear circuit see “Linear circuit supported
Fan, symmetries of 48
Fan, toric variety of 32 51
Fano variety 46 218 219 223 228 405
Fermion 2 419—421 425
Fermion, relation to supercommuting variables 230 419
Fermionic field 419 420 fermionic
Fermionic variables 419 427 428
Feynman diagram 196
Feynman integral 2 7
Field strength 417 418
Field, bosonic see “Bosonic field”
Field, classical 411 414 416
Field, fermionic see “Fermionic field”
Field, primary 424
Field, quantum 414 416
Field, theory 411 414
Flag manifold 219 228 254
Flag manifold, complete intersection in 364 366
Flag manifold, complete intersection in, Calabi — Yau 405
Flag of graph 285 (see also “Localization in d)$"/> fixed
Flip 137 139
Flip, example of 141
Flip, geometric significance of 137 (see also “Flop generalized”)
Flip, trivial 137 138 141 142 156
FLOP 43 133 147 225 226
Flop, example of 141
Flop, generalized 137
Flop, trivial 137
Fourier transform 414 418
Frobenius algebra 221 234 240 430 435
Frobenius algebra, definition of 432
Frobenius algebra, gives (l + 1)-dimensional TQFT 432 434
Frobenius algebra, n-point function of 432 434
Frobenius algebra, three-point function of 432
Frobenius algebra, trace map of 432
Frobenius manifold 241
Frobenius method 26 77 161—163 333
Frobenius method in cohomology ring of 164
Frobenius method, example of 162 165
Fundamental class 172
Gale transform 44
Gauge choice 418 419 424
Gauge fixing 417
Gauge group 417 419 420 424 429
Gauge group for electricity and magnetism 418
Gauge theory 417 428
Gauged linear sigma model 12 42 45 334 428—430
Gauged linear sigma model, action of 428
Gauged linear sigma model, action of, bosonic part of 428
Gauged linear sigma model, correlation function of 364
Gauged linear sigma model, example of 429
Gauged linear sigma model, gauge group of 428
Gauged linear sigma model, mirror symmetry for 430
Gauged linear sigma model, phases of 143 (see also “Phases”)
Gauged linear sigma model, phases of Calabi — Yau 429
Gauged linear sigma model, phases of Landau — Ginzburg 430
Gauged linear sigma model, relation to toric geometry 429
Gauss — Manin connection 8 25 75 82 151 250 259 265—267
Gauss — Manin connection of a Calabi — Yau threefold 106 108 109 251 257 258
Gauss — Manin connection, connection matrix see “Connection matrix”
Gauss — Manin connection, definition of 74
Gauss — Manin connection, fiat integral section 82 106 111 150 151 387
Gauss — Manin connection, relation to normalized Yukawa coupling 105
Generalized Berglund-Hiibsch transposition rule 70
Generalized fiop see “Flop generalized”
Generalized Fredholm orbifold bundle 191
Generalized Fredholm orbifold bundle, oriented Euler class of 191
generated by global sections 33
Genus g coupling 303 312
Genus g gravitational Gromov — Witten potential 303
Genus g gravitational Gromov — Witten potential, definition of 304
Geometric quotient 37 117
Geometrically engineered theory 406
Ghosts 424
| GIT quotient 117 120 122
Giventai connection 316
Giventai connection, definition of 311
Giventai connection, dual 321 329
Giventai connection, flat sections of 311—313 319
Giventai connection, flat sections of, restriction of 314 322
Giventai connection, flat sections of, symbolic notation for 312
Giventai connection, relation to Dubrovin connection 245
Giventai connection, restriction to 314 320
Giventai connection, restriction to H^2(V,\mathbb{C}) 315
Giventai I-function for 393 394
Giventai I-function for 357
Giventai I-function for 357 365 371
Giventai I-function for a toric variety 389
Giventai I-function when is nef 393
Giventai I-function, 26 27 100 358 379 380
Giventai I-function, for a convex variety 381
Giventai I-function, for a toric variety 381 383
Giventai I-function, for hypersurface in P(1,1,2,2,2) 384
Giventai I-function, for quintic threefold 26 98 101 164 361 362
Giventai I-function, , definition of 356
Giventai I-function, , example of 364
Giventai I-function, , satisfies Picard — Fuchs equations of mirror 101 121 128 383 385 399
Giventai I-function, 98—101 128 164 359
Giventai I-function, , satisfies A-system 98 391
Giventai I-function, 365 366
Giventai I-function, equivariant version of 371
Giventai I-function, equivariant version of 379 382
Giventai J-function 25 320—325 358 359
Giventai J-function for 393 394
Giventai J-function for 324 357
Giventai J-function for 324 325 346 357 365
Giventai J-function for a Calabi — Yau threefold 325—329
Giventai J-function for a Calabi — Yau threefold, formula for 325 326
Giventai J-function for a Calabi — Yau threefold, in terms of Gromov — Witten potential 326
Giventai J-function for a Calabi — Yau threefold, second partials of 326 363
Giventai J-function for a toric variety 389
Giventai J-function for a toric variety, when is nef 393
Giventai J-function for hypersurface in P(1,1,2,2,2) 386 388
Giventai J-function for quintic threefold 25 362
Giventai J-function, 26 358 359 379 380
Giventai J-function, for a convex variety 365
Giventai J-function, for a toric variety 381—383
Giventai J-function, for hypersurface in P(l,1,2,2,2) 384 388
Giventai J-function, for quintic threefold 26 362
Giventai J-function, , definition of 358
Giventai J-function, , example of 364
Giventai J-function, , gives relations in modified quantum cohomology 363
Giventai J-function, , gives relations in quantum cohomology 364
Giventai J-function, , symbolic notation for 358
Giventai J-function, definition of 320
Giventai J-function, equivariant version of 366
Giventai J-function, equivariant version of , definition of 367
Giventai J-function, equivariant version of , definition of S 366
Giventai J-function, equivariant version of 372 382
Giventai J-function, equivariant version of , definition of 372 373
Giventai J-function, equivariant version of , definition of $Z_{i,\nu} 373
Giventai J-function, equivariant version of , definition of 372 373
Giventai J-function, formulas for 322 356
Giventai J-function, gives relations in quantum cohomology 321
Giventai J-function, primitive part of 361
Giventai J-function, relation between and 359 360 382 386 400
Giventai J-function, symbolic notation for 322 356 360
Giventai J-function, toric part of 382
GKZ decomposition 43 44 60 120 121 139 143 155 161 225 430
GKZ decomposition, enlarged 43 430
GKZ decomposition, examples of 50—52 124 127 140
GKZ system 95 96 100 101 122—123 125 158—166 333 383
global sections of 34?
GLSM see “Gauged linear sigma model”
Gluing lemma 338 342 380
Grassmannian 167 173 219 227 228 281 293 405
Grassmannian, Caiabi — Yau complete intersection in 405
Grassmannian, Caiabi — Yau complete intersection in threefold 366
Gravitational class 306 309
Gravitational class, definition of 305
Gravitational correlators 25 196 211 301—311 320 382 383
Gravitational correlators, axioms for see “Gravitational class”
Gravitational correlators, axioms for Degree Axiom 304 310 311 317 318 325 360
Gravitational correlators, axioms for Dilaton Axiom 306—308 310 318
Gravitational correlators, axioms for Divisor Axiom 305—308 310 314 318 357
Gravitational correlators, axioms for Fundamental Class Axiom 305—308 318 324 325
Gravitational correlators, axioms for Splitting Axiom 305—307 313
Gravitational correlators, coefficients 303
Gravitational correlators, definition of 302
Gravitational correlators, genus 0 correlators in terms of Gromov — Witten invariants 306
Gravitational correlators, genus 0 correlators of 306 357
Gravitational correlators, genus 0 correlators of , recursion for 307 308
Gravitational correlators, genus 0 correlators of Calabi — Yau threefolds 308
Gravitational correlators, genus 1 correlator 308 309
Gravitational correlators, genus 1 correlator , relation to Euler characteristic 310
Gravitational correlators, recursions coming from TRRs 311 (see also “Topological recursion relation”)
Gravitational correlators, relation to Gromov — Witten invariants 303
Gravitational correlators, symbolic notation for 315 356
Gravitational descendants 302 311
Gravitational descendants, relation to gravitational correlators 303
Gravitational Gromov — Witten potential see “Genus g gravitational Gromov — Witten potential”
Gravitational potential 310
Gravitational quantum product 234 304
Gravitational quantum product, coefficients 304
Griffiths transvereality 74 76 102 103 111 252 254
Griffiths transvereality for projective hypersurfaces 83
Griffiths transvereality for the A-variation of Hodge structure see “A-variation of Hodge structure Griffiths
Griffiths — Dwork method 83—87 94 96
Griffiths — Dwork method for projective hypersurfaces 83—85
Griffiths — Dwork method for toric hypersurfaces 85-87
Griffiths — Dwork method for toric hypersurfaces, limitations of 86
Griffiths — Dwork method for weighted projective hypersurfaces 85
Griffiths — Dwork method, description of 84
Griffiths — Dwork method, examples of 87—90
Grobner basis techniques 84 86—88 90 225
Grobner fan 121 225
Gromov — Uhlenbeck compactification 187 209
Gromov — Witten class 200 212 220 232 305 309
Gromov — Witten class of 198 199
Gromov — Witten class, axioms for 191—195 304
Gromov — Witten class, axioms for Composition Law 194
Gromov — Witten class, axioms for Deformation Axiom 194 395
Gromov — Witten class, axioms for Degree Axiom 192 198 201 265
Gromov — Witten class, axioms for Divisor Axiom 193 198 200—203 212 235 236 239 246 265 307
Gromov — Witten class, axioms for Effectivity Axiom 192 228
Gromov — Witten class, axioms for Equivariance Axiom 192 199 201 219—221 233 241
Gromov — Witten class, axioms for Fundamental Class Axiom 193 198 199 201 212 219 234 235 265
Gromov — Witten class, axioms for Linearity Axiom 192
Gromov — Witten class, axioms for Motivic Axiom 194
Gromov — Witten class, axioms for Point Mapping Axiom 193 197 200 201 204 211 219 231 234 235 239 307 310 314
Gromov — Witten class, axioms for Reduction Axiom 194 212 310
Gromov — Witten class, axioms for Splitting Axiom 194 196 198 199 219 220 233 241
Gromov — Witten class, definition in simplest case 171
Gromov — Witten class, definition of 183 (see also “Gromov — Witten invariant algebraic
Gromov — Witten class, intuitive definition of 168
Gromov — Witten class, role of fundamental class 172
Gromov — Witten class, symplectic 190
Gromov — Witten class, tree-level 196
Gromov — Witten invariant 7 9 15 16 24 25 28 265 266 273 281 298—301 307
Gromov — Witten invariant algebraic definition in general case 183
Gromov — Witten invariant algebraic definition in simplest case 171
Gromov — Witten invariant, algebraic definition 168—184 (see also “Virtual fundamental class”)
Gromov — Witten invariant, algebraic definition, intuitive idea of 168
Gromov — Witten invariant, algebraic definition, role of fundamental class 172
Gromov — Witten invariant, arises in physics 422
Gromov — Witten invariant, axioms for 192 193 axioms
Gromov — Witten invariant, computing 196—215
Gromov — Witten invariant, computing elliptic invariants of 210—212 310
Gromov — Witten invariant, computing elliptic invariants of 213
Gromov — Witten invariant, computing elliptic invariants of the quintic threefold 213 214
Gromov — Witten invariant, computing genus 0 invariants of 197—201 236 237 310
Gromov — Witten invariant, computing genus 0 invariants of Calabi — Yau threefolds 201—210 308 325
Gromov — Witten invariant, computing genus 0 invariants of the quintic threefold 184 201—203 Gromov
Gromov — Witten invariant, computing genus 2 invariants of 311
|
|
![blank](/z.gif) |
Ðåêëàìà |
![blank](/z.gif) |
|
|