|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Cox D., Katz S. — Mirror symmetry and algebraic geometry |
|
|
Ïðåäìåòíûé óêàçàòåëü |
-category 403
41—45 135—137 139 161
, -convex 43
, definition in 43
, definition in 39
see “Givental I-function
see “Givental J-function
333 350 Gromov
for a critical bundle 352
in multiple cover case 352 355
336 375
, fixed point loci 376
, fixed point loci, normal bundle of 377
, map ft to 375
334
, fixed point loci 334 339
, fixed point loci, description of 334
, fixed point loci, graph 339
, fixed point loci, normal bundle of 341
, map to 336 337 339—341 344 375
, torus action on 334
, Gromov — Witten invariant for 198
, Gromov — Witten invariant for the quintic threefold 201
, projective space 334 375
, projective space, equivariant cohomology of 335
, projective space, equivariant hyperplane class of 335
, projective space, fixed points of 335 340
, projective space, torus action on 335
, projective space, weights of 335
27 28 340 343 344 347 348 350 351 353
for a concavex bundle 349
in multiple cover case 352 355
is Euler data 339
, definition of 337
27 28 101 164 343 346 353
for a concavex bundle 350
in multiple cover case 355
is Euler data 339
, definition of 337
and its toric blow-up 49 89
and its toric blow-up, Calabi — Yau hypersurface in 427
and its toric blow-up, Calabi — Yau hypersurface in A-model correlation function of 269 386 388
and its toric blow-up, Calabi — Yau hypersurface in Givental function 384
and its toric blow-up, Calabi — Yau hypersurface in Givental function 386 388
and its toric blow-up, Calabi — Yau hypersurface in Gromov — Witten potential of 387 388
and its toric blow-up, Calabi — Yau hypersurface in Hodge numbers of 146
and its toric blow-up, Calabi — Yau hypersurface in instanton numbers of 269 270
and its toric blow-up, Calabi — Yau hypersurface in Kahler cone of 146 269 383
and its toric blow-up, Calabi — Yau hypersurface in Kahler moduli of 146 147
and its toric blow-up, Calabi — Yau hypersurface in mirror map of 158 159 164—166 270 385 388
and its toric blow-up, Calabi — Yau hypersurface in Mirror Theorem for 383; 386 388
and its toric blow-up, Calabi — Yau hypersurface in moduli coordinates of 269
and its toric blow-up, Calabi — Yau hypersurface in SCFT moduli of 147
and its toric blow-up, Calabi — Yau hypersurface in toric Kahler cone of 148
and its toric blow-up, Calabi — Yau hypersurface in toric Kahler moduli of 148 269
and its toric blow-up, GKZ decomposition of 50 124 146
and its toric blow-up, Mirror Conjecture for 269
and its toric blow-up, mirror of Calabi — Yau hypersurface in 88 95 103 123 145 164
and its toric blow-up, mirror of Calabi — Yau hypersurface in A-system of 96 385
and its toric blow-up, mirror of Calabi — Yau hypersurface in discriminant locus of 147
and its toric blow-up, mirror of Calabi — Yau hypersurface in Frobenius method 165
and its toric blow-up, mirror of Calabi — Yau hypersurface in Gauss — Manin connection of 269 385 386
and its toric blow-up, mirror of Calabi — Yau hypersurface in Hodge numbers of 146
and its toric blow-up, mirror of Calabi — Yau hypersurface in homogeneous coordinate ring of 89
and its toric blow-up, mirror of Calabi — Yau hypersurface in moduli coordinates of 89 95 148 158 387
and its toric blow-up, mirror of Calabi — Yau hypersurface in monodromy of 270 385 387
and its toric blow-up, mirror of Calabi — Yau hypersurface in periods of 164 165 385
and its toric blow-up, mirror of Calabi — Yau hypersurface in Picard — Fuchs equations of 90 96 103 158 165 385 386
and its toric blow-up, mirror of Calabi — Yau hypersurface in satisfies integrality conjecture 270 385
and its toric blow-up, mirror of Calabi — Yau hypersurface in simplified moduli of 147 148
and its toric blow-up, mirror of Calabi — Yau hypersurface in Yukawa couplings of 103 104 125 385 388
and its toric blow-up, polytope of 88
see “Cotangent line ”
358 373
364 (see also
for 337 340 344
for a concavex bundle 349 351 358 375
for quintic threefold 181 184 201 288 299 302 332
in multiple cover case 352
357 358 360
364 (see also
-Euler data see “Euler data”
-convex see “
A-discriminant 122 125
A-hypergeometric equations see “A-system”
A-model 7 422 423
A-model is a (l + 1)-dimensional TQFT 434
A-model, connection 82 111 258 259 265—267 271
A-model, connection has maximally unipotent monodromy 250
A-model, connection of a Calabi — Yau threefold 248 255—257 318 328 329
A-model, connection, asymptotics of 245
A-model, connection, canonical extension of 249 251 254 316
A-model, connection, convergence assumption 245 249 261 316
A-model, connection, definition of 244
A-model, connection, flat sections of 248 249 315—318
A-model, connection, flatness of 244
A-model, connection, monodromy of 246 248 249 316
A-model, connection, monodromy weight filtration of 249 250 253
A-model, connection, Picard — Fuchs operator for see “Picard — Fuchs operator”
A-model, connection, role of basis 251
A-model, connection, satisfies integrality conjecture 250 258
A-model, correlation function see “Correlation function A-mode”l
A-system 90 (see also “GKZ system and hypergeometric equations”)
A-system of a Calabi-Yau toric hypersurface see “Calabi — Yau toric
A-system of a smooth Fano toric variety 390 391
A-system, definition of 91
A-system, example of 93—96 125 162
A-system, holomorphic solution at maximally unipotent boundary point 160
A-system, solutions of 98 100 164
A-variation of Hodge structure 25 107 222 253 254 connection”)
A-variation of Hodge structure, definition of 251 255
A-variation of Hodge structure, Griffiths transversality for 252 254
A-variation of Hodge structure, Hodge filtration of 251
A-variation of Hodge structure, integer lattice of 249 251 254 260
A-variation of Hodge structure, middle 258
A-variation of Hodge structure, middle has maximally unipotent monodromy 255
A-variation of Hodge structure, middle, definition of 255
A-variation of Hodge structure, middle, mixed Hodge structure is Hodge — Tate 255 264
A-variation of Hodge structure, middle, real structure on 255 264
A-variation of Hodge structure, middle, toric 271
A-variation of Hodge structure, mixed Hodge structure of 253 255 connection monodromy
A-variation of Hodge structure, polarization of 252 254 258
Abel — Jacobi mapping 67 427
action 412 416
Action of sigma model 420 421
Action of sigma model, bosonic part of 420
Action of sigma model, fermionic part of 420
Algebraic space 170
Algebraic stack 169
Algebraic stack, bundle on see “Euler class stack
Algebraic stack, Deligne — Mumford 178
Algebraic stack, intersection theory on 178 279
Algebraic stack, quotient of 178
Algebraic stack, smooth 170 279
Almost complex structure 205 208
Almost complex structure, compatible 185 188
Almost complex structure, tamed 185
ample 33 35 40
Annihilation operator 415 418
Anticanonical divisor 46 48 49 51 54
Anticanonical linear system 55 56
Anticommutator 422
Arnold strange duality 401
B-model 8 422 423
B-model, correlation function see “Correlation function B-model”
B-model, potential function 108 109 261 263
B-model, potential function in terms of periods 389 399
B-model, potential function of the quintic mirror see “Quintic mirror B-model
B-model, potential function, toric 269 388
Batyrev mirror see “Mirror construction Batyrev”
| Batyrev quantum ring 223 225 389
Batyrev quantum ring for nef 393
Batyrev quantum ring for 393—395
Batyrev quantum ring for 224
Batyrev quantum ring for a Fano toric variety 392
Batyrev quantum ring, definition of 224
Bipyramid construction 70 72
Birational cone conjecture see “Cone conjecture birational”
Bivariant Chow group 180 182
Black holes 145 404
Black holes, massless 145
Boson 2 419 420 425
Bosonic components 427 429
Bosonic field 419
Bosonic variables 427 428
BRST cohomology 302 422 423
BRST operator 422 423
Caiabi-Yau cone 139
Caiabi-Yau cone, example of 140
Calabi — Yau, automorphism group of 12 127 129—131 138
Calabi — Yau, constructed from K3 surfaces 66
Calabi — Yau, generalized 65
Calabi — Yau, manifold 1 10 185 218 222 243 246 264—267 315 317 359 381 421 427
Calabi — Yau, manifold with K3 or elliptic fibration 404
Calabi — Yau, minimal 267
Calabi — Yau, moduli of see “Moduli”
Calabi — Yau, orbifold 12 17 55 408 410
Calabi — Yau, rigid 65 261 267
Calabi — Yau, threefold 3 4 6 7 9 10 53 74 79 102—112 130 132—134 143 151 201—210 225—227 238 247 248 251 255—262 267 282 288—293 308 318 325—329 352 366 388 389 405 423 425 427 A-model;
Calabi — Yau, toric complete intersection see “Toric complete intersection Calabi
Calabi — Yau, toric hypersurface 53 56 60 116—127 134—143 155—166 267 270 383 430
Calabi — Yau, toric hypersurface, A-system of 91—93
Calabi — Yau, toric hypersurface, complex moduli of see “Moduli complex”
Calabi — Yau, toric hypersurface, Kahler moduli of see “Moduli Kahler”
Calabi — Yau, toric hypersurface, nondegenerate 122
Calabi — Yau, toric hypersurface, Picard — Fuchs equations of 91 92 383
Calabi — Yau, variety 55 60 63 407
Calabi — Yau, variety, definition of 11
Calabi — Yau, variety, minimal 11 55 63 116 407 409 410
Calabi — Yau, weighted projective hypersurface 70 207 405
Calabi — Yau, weighted projective hypersurface, list of 55 60 72 145
Canonical extension 75 154 247 249 260
Canonical extension of A-model connection see “A-model connection canonical
Categorical quotient 37
Cauchy — Riemann equation 185 187 191
Cauchy — Riemann equation, inhomogeneous 187
Cauchy — Riemann equation, perturbed 187
Cayley trick 64
Central charge 310 425
Chiral ring 36 217 427
Chiral superfield 426—428
Chow quotient 117 119 120 148
Class see “Mirror theorems Givental class
Clemens conjecture 15 16 202 206 214 400
Clemens conjecture, statement of 202
Cohomological field theory 241 (see also “Dubrovin formalism”)
Cohomological field theory for higher genus 241
Cohomological field theory, correlation functions of 241
Cohomological field theory, Kunneth formula for 241
Combinatorial duality 42 46
Complete intersection 364
Complete intersection in 215 364
Complete intersection in a convex variety 366
Complete intersection in a convex variety nef 365
Complete intersection in a flag manifold see “Complete intersection in a convex varietyflag manifold”
Complete intersection in a Grassmannian see “Grassmannian”
Complete intersection toric see “Toric complete intersection”
Complete intersection virtual fundamental class of see “Virtual fundamental class of
Complex reflection 408
Complexified, Kahler class 3 6—9 11 12 15 18 22 204 217 218 225 228 230 303 304 434
Complexified, Kahler moduli see “Moduli Kahler”
Complexified, Kahler space 12 18 127 128 152 243 245 251
Concave bundle 349
Concave bundle in multiple cover case 352
Concavex bundle 337 349 350 352
Concavex bundle, critical 350 352
Concavex bundle, critical, definition of 351
Cone conjecture 130 134 150 152 245 399
Cone conjecture, birational 133
Cone conjecture, consequences of 130
Cone conjecture, when known 130
Cone, Calabi — Yau see “Calabi — Yau cone”
Cone, dual see “Dual cone”
Cone, face of see “Face of a cone”
Cone, Gorenstein 64
Cone, Gorenstein, reflexive see “Reflexive Gorenstein cone”
Cone, homogeneous self-adjoint 131
Cone, rational polyhedral see “Rational polyhedral cone”
Conformai algebra 2 423 424
Conformal field theory 423—426
Conformal field theory of a sigma model 425
Conformal field theory, gauge choice in 424
Conformal field theory, gauge group of 424
Conformal group 424 425
Conformal invariance 420 424
Conifold 122 143
Conifold, transition 143 404—406 type
Conifold, transition, example of 144
Conjugate momentum 412 414
Connection 247 (see also “A-model connection”)
Connection , flat sections of 247—249 254 316 318
Connection matrix 25 27 76 79 106 108 246
Conserved current 419
Convex function 39 (see also “”)
Convex function, strictly 39 42 43 45
Convex, bundle 349 (see also “Concavex bundle”)
Convex, line bundle 364
Convex, variety 298 358 365 366 381 382
Convex, variety, definition of 180
Correlation function 1 6 56 152 158 241 260 303 364 416 421
Correlation function of a Frobenius algebra 432
Correlation function, A-model 7—9 11 107 203 259 266 268 385 387 389 422 423 A-model
Correlation function, A-model of a Calabi — Yau threefold 204 226 255 256 327
Correlation function, A-model, definition of 221
Correlation function, A-model, effect of a flop 227
Correlation function, A-model, in terms of instanton numbers 226
Correlation function, B-model 8 9 110 256 259 265 268 385 387 423 potential
Correlation function, B-model, toric 268
Correlation function, genus g 434
Correlation function, n-point 416 434
Correlation function, quintic see “Quintic mirror and quintic threefold”
Correlation function, three-point 6—10 221 226 227 255 256 422
Correlation function, Voisin — Borcea mirror construction 69
Cotangent complex 178
Cotangent line 302 369
Creation operator 415 418
Crepant 54
Critical bundle see “Concavex bundle critical”
Curvature tensor 420
D-brane 402 404
Deformations, example of 125 147 158 159
Deformations, infinitesimal 57 153 175
Deformations, infinitesimal of a minimal Calabi — Yau orbifold 410
Deformations, infinitesimal of an orbifold 410
Deformations, non-polynomial 58 147
Deformations, polynomial 57 61
Deformations, principal component 122 125
Discriminant locus 104 122 toric nondegenerate”)
Dominance conjecture 117 155
Double covers of 6-nodai quintics 293—297
Double covers of 6-nodai quintics, contribution to Gromov — Witten invariant and virtual fundamental class 297
Double covers of 6-nodai quintics, covers factoring through normalization 295—297
Double covers of 6-nodai quintics, covers not factoring through normalization 295 296
Double covers of 6-nodai quintics, moduli of 295
Double covers of 6-nodai quintics, moduli of tangent space of 296
Dual cone 31
Dualizing sheaf 11 46 407 409
Dubrovin connection 239 311 312
Dubrovin connection, definition of 239
Dubrovin connection, Euler vector field of 241
|
|
|
Ðåêëàìà |
|
|
|