|
|
Результат поиска |
Поиск книг, содержащих: Spinor field
Книга | Страницы для поиска | Berger M. — A Panoramic View of Riemannian Geometry | 695 | Ward R.S., Wells R.O. — Twistor geometry and field theory | 125, 127, 245, 246, 260, 261, 301, 302, 311, 347, 349, 395, 406, 434—436, 454 | Naber G.L. — Topology, Geometry and Gauge Fields | 117, 410 | DeWitt B.S. — The global approach to quantum field theory (Vol. 1) | 347ff, 888ff, 910ff | Bailin D., Love A. — Introduction to Gauge Field Theory | 25 | Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 125, 127, 163, 167, 192, 224 | Lopuzanski J. — An introduction to symmetry and supersymmetry in quantum field theory | 84 | Mercier A. — Analytical and canonical formalism in physics | 72, 144, 161 | Stone M. — The physics of quantum fields | 13, 77, 254 | Birrell N.D., Davies P.C.W. — Quantum Fields in Curved Space | 17, 23, 28, 31, 80, 83—88, 93, 182, 258, 318 | Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 179, 250—252, 264—265, 281—282, 319—327, 402—404, 527, 534, 620—623 | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness | 117 | Bogoliubov N.N., Shirkov D.V. — Introduction to the Theory of Quantized Fields | 51, 63, 99, 123 | Alekseevskij D.V., Vinogradov A.M., Lychagin V.V. — Geometry I: Basic Ideas and Concepts of Differential Geometry | 159 | Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 418 | Wheeler J.A. — Topics of modern physics. Vol. I. Geometrodynamics | 8 | Roepstorf G. — Path integral approach to quantum physics | 316 | Moore J.D. — Lectures on Seiberg-Witten Invariants | 45 | Naber G.L. — Topology, Geometry and Gauge Fields | 117, 410 | Ticciati R. — Quantum field theory for mathematicians | see "Dirac field", "Weyl field" | Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 418 |
|
|