|
|
Результат поиска |
Поиск книг, содержащих: Contraction mapping principle
Книга | Страницы для поиска | Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 8 | Estep D.J. — Practical Analysis in One Variable | 205, 573 | Hall G.R., Lee — Continuous dynamical systems | 57 | Lieberman G.M. — Second Order Parabolic Differential Equations | 29 | Antman S.S. — Nonlinear Problems of Elasticity | 675—S76 | Duffie D. — Security Markets. Stochastic Models | 191 | Balachandran V.K. — Topological Algebras. Volume 185 | 4.3.15, 194 | Berinde V. — Iterative Approximation of Fixed Points | 6, 31 | Butcher J. — Numerical Methods for Ordinary Differential Equations | 23 | de Souza P.N., Silva J.-N. — Berkeley Problems in Mathematics | 302, 303 | Efimov A.V. — Mathematical analysis: advanced topics. Part 2. Application of some methods of mathematical and functional analysis | 139 | Prilepko A.I., Orlovsky D.G., Vasin I.A. — Methods for Solving Inverse Problems in Mathematical Physics | 271, 311 | Taylor M.E. — Partial Differential Equations. Nonlinear Equations (vol. 3) | 100, 272 | Gripenberg G., Londen S.O., Staffans O. — Volterra integral and functional equations | 314[11.2.1] | Souza P., Silva J., Souza P. — Berkeley Problems in Mathematics | 247 | Souza P., Silva J., Souza P. — Berkeley Problems in Mathematics | 247 |
|
|