Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Grimaldi R.P. — Discrete and combinatorial mathematics. An introduction
Grimaldi R.P. — Discrete and combinatorial mathematics. An introduction



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Discrete and combinatorial mathematics. An introduction

Автор: Grimaldi R.P.

Аннотация:

This is an excellent book for self study. However, there are parts in this book that must be rearranged or deleted. For example, I think Catalan numbers should be deleted. This might be useful for the matrix chaining problem, but that's in the realms of algorithm design (specifically in dynamic programming). Also, I do not understand why Grimaldi sandwiched in a chapter on Finite State Machines between two chapters on Functions and Relations. Maybe he should make a section on languages for FSMs, but I recommend Sipser's Introduction to the Theory of Computation if you want to learn about FSMs.


Язык: en

Рубрика: Computer science/Дискретная математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 3rd edition

Год издания: 1994

Количество страниц: 1024

Добавлена в каталог: 17.11.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Principia Mathematica      138 177
Principle of choice      5
Principle of cross classification      428
Principle of duality for a Boolean algebra      764
Principle of duality for Boolean functions      737 738
Principle of duality for Boolean variables      737 738
Principle of duality for logic      65
Principle of duality for set theory      161
Principle of inclusion and exclusion      261 403—412 418 424 428 433 683
Principle of Mathematical Induction      184 (see also “Mathematical induction” “Mathematical
Principle of Strong Mathematical Induction      196
probability      3 45 172—174 176 178 179 245 418 425 476 428 457 458 480 523 794
Probability Bernoulli trial      173
Probability Binomial distribution      173
Probability elementary event      173
Probability event      173
Probability experiment      172
Probability independent events      794
Probability independent outcome      173
Probability sample space      172
Problem of the 36 officers      858 872
Procedural language      618
Proceedings of the Royal Geographical Society      589
Product of Boolean functions      737
Product of disjoint cycles      814
Product of maxterms      742
Program Evaluation and Review Technique (PERT) network      372 394
Program verification      194
Projection      271—273
Projective plane      867—869
proof      51 139 140 “Mathematical “Mathematical
Proof by contradiction      87 91 95 113 133 134 148 158 184 233 295
Proper coloring of a graph      588
Proper divisors of 0      213
Proper divisors of zero      703
Proper prefix      319
Proper subgroup      780
Proper subset      144—146
Proper substring      320
Proper suffix      319
Properties of exponents      A-4
Properties of logarithms      A-7
Properties of the integers      183—243
Properties of the integers Division Algorithm      213—218 225—227
Properties of the integers Euclidean Algorithm      226—229
Properties of the integers Fundamental Theorem of Arithmetic      183 232—236
Properties of the integers greatest common divisor      225—229 231
Properties of the integers least common multiple      230 231
Properties of the integers Mathematical induction      183—199 233
Properties of the integers primes      183 214 215 232—234
Properties of the integers Well-Ordering Principle      184
Proposition      51 (see also “Statement”)
Protons      42
push      502
q is necessary for p      52
Qnintilianus, Marcus Fabius      730
Quadratic equation      829
Quadratic time complexity      296 304
Quantifiers      100 102 103 120 138 145 146 166 185 295
Quantifiers $\exists !x$      120
Quantifiers $\exists x$      100
Quantifiers $\forall x$      100
Quantifiers Bound variable      100
Quantifiers Connectives      100 101
Quantifiers Existential quantifier      100
Quantifiers Free variable      100
Quantifiers Implicit      102 103
Quantifiers Unique existential quantifier      120
Quantifiers Universal quantifier      100
quantum mechanics      43
Quartic equation      829
Quaternary sequence      245
QUEUE      626
Quick sort      638
Quine-McCluskey method      753 773
Quintic equation      830 872
Qume, W.V.      624 773
Quotient      215 216
r(C, x)      421
Ralston, Anthony      556 601 602
Ramsey theory      311
Ramsey, Frank Plumpton      311
Random walk      523
RANGE      252
Rate of a code      796 811
Reachability      350
Reachable state      340
Reactor      497
Read, R.C.      590 595 600 602 832
Received word      795 (see also “Algebraic coding theory”)
Record      720
Recurrence relations      461—464 471—480 482—499 511 512 521 522
Recurrence relations, boundary conditions      462
Recurrence relations, characteristic equation      471
Recurrence relations, characteristic roots      471
Recurrence relations, Fibonacci relation      472 521
Recurrence relations, first-order linear relation      461—467
Recurrence relations, general solution      462
Recurrence relations, homogeneous relation      463
Recurrence relations, initial condition      462
Recurrence relations, linear relation      463
Recurrence relations, linearly independent solutions      471 477
Recurrence relations, method of generating functions      493—499
Recurrence relations, method of undetermined coefficients      482—484
Recurrence relations, nonhomogeneous relation      463 482—484
Recurrence relations, nonlinear relation      499—504
Recurrence relations, particular solution      483
Recurrence relations, second-order linear relations      471—480
Recurrence relations, system of recurrence relations      498 499
Recurrence relations, Table of particular solutions for the method of undetermined coefficients      490
Recurrent event      523
Recursion      202
Recursive algorithm      467 488 489
Recursive definition      202—204 206—208 254 284 316 318 324 325 461 620 622
Recursive function      260 468 469
Recursive procedure      637
Recursive process      202
Recursively defined set      209 249 250 323—325
Redei, L.      581
Redfield, J. Howard      832
Reducible polynomial      844
Reductio ad absurdum      87 148
Redundant state      388
Reed, M.B.      600 602
Reed, Robert D.      45 46
Refinement (of a partition)      391
Reflection principle      49 523
Reflections      782
Reflexive property (of a relation)      350 351 367 394 395
Region      563
Regular graph      551
Reingold, Edward Martin      523 524
Relation      202 245 248 249 251 284 309 349—362 364 366—368 372—379 382—386 388 394 395 397 399 400 529
Relation composition      357 358
Relation matrix      359 362 367
Relation reachability      350
Relation, 1-equivalence      350 388
Relation, antisymmetric relation      352 362 367
Relation, associative law of composition      358
Relation, binary relation      248
Relation, composite relation      358 360
Relation, converse of a relation      284
Relation, definition of a relation      248 349
Relation, divides relation      373
Relation, equivalence relation      355 368 382—386 394—396
Relation, equivalent states      350 388
Relation, first level of reachability      350
Relation, irreflexive relation      357
Relation, k-equivalent states      350 388
Relation, modulo n relation      350
Relation, partial order      353—356 372—379 394
Relation, partial ordering relation      353 372
Relation, poset      372—374 376—379
Relation, powers of a relation      358 359
Relation, reflexive relation      350 351 362 367 394 395
Relation, relation composition      357 358
Relation, relation matrix      359—362 367
Relation, second level of reachability      350
Relation, subset relation      249 353 373 376 378
Relation, symmetric relation      351 362 367 394 395
Relation, transitive relation      352 362 367 373 394 395
Relation, zero-one matrix      357 359—362 395
Relational data base      272 311
Relative complement      159
Relatively prime integers      226
Relatively prime polynomials      845
Relativity theory      731
Remainder      215 216
Remainder theorem      841
Rencontre      420 428
Repeat-until loop      61 189
Repetition      146
Replication number      866
Representation Theorem for a finite Boolean algebra      768 773
Resek, Diane      140
Reserved words      14
Reset      330
Restriction of a function      257
Reversal of a string      325
Right child      617
Right coset      791
Right subtree      622 623
Right-cancellation property (in a group)      779
Rigid motions of a cube      826 827
Rigid motions of a regular hexagon      822 823
Rigid motions of a regular tetrahedron      827 828
Rigid motions of a square      814
Rigid motions of an equilateral triangle      781—783
Ring      735 778 779 835 846
Ring homomorphism      723—725 731
Ring isomorphism      723 726 728
Ring of matrices      702 703
Ring of polynomials      835 837
Ring theory      701—733 792 835 837 838 849
Ring theory Boolean ring      732
Ring theory cancellation law of addition      709 724
Ring theory cancellation law of multiplication      707 711
Ring theory center of a ring      733
Ring theory characteristic      849
Ring theory commutative ring      703
Ring theory congruence modulo n      717
Ring theory definition      701 702
Ring theory field      706 711 719 731
Ring theory group of units      792
Ring theory homomorphism      723—725 731
Ring theory ideal      714 725 731
Ring theory integers modulo n      717—721
Ring theory integral domain      706 711
Ring theory isomorphic rings      723
Ring theory isomorphism      723 726 728
Ring theory kernel of a homomorphism      729
Ring theory matrix rings      702 703 730
Ring theory multiplicative identity      703
Ring theory multiplicative inverse      706
Ring theory, $Z_N$      717
Ring theory, proper divisors of zero      703
Ring theory, ring of matrices      702 703
Ring theory, ring of polynomials      835 837
Ring theory, ring properties      709—714
Ring theory, ring with unity      703 837 838
Ring theory, subring      712—714 724 725
Ring theory, subtraction      709
Ring theory, unit      706
Ring theory, unity      703
Ring with unity      703 837 838
Ringel, Gerhard      599 602
Rings of Saturn      45
Rinnooy Kan, A. H. G.      585 600 602
Riordan, John      429 458
Roberts, Fred S.      45 46 600 602
Rook      420—422
Rook polynomial      421—425 429 434 683
Root of a binary ordered tree      500
Root of a polynomial      838 841 844
Root of a tree      614
Rooted binary tree      499 500
Rooted Fibonacci tree      653
Rooted ordered binary tree      505—507 523
Rooted tree      614 619 628 629
Rorres, Chris      A-24
Rosen, Kenneth H.      45 46 241
Ross, Kenneth A.      139 140
Rota, Gian Carlo      429 458
Rotations      781 782
Rothman, Tony      872 873
Rothschild, Bruce L.      311 312
Round-robin tournament      582
Rouvray, Dennis H.      600 602
Row major implementation      253 259
Row matrix      A-13
Row number      741
Row vector      A-13
Roy, R.R.      45 46
Ruin problems      523
Rule for Proof by Cases      88
Rule of Conditional Proof      88
Rule of Conjunction      85 88
Rule of Conjunctive Simplification      88 108 157
Rule of Contradiction      86—88
Rule of Detachment      80 81 88
Rule of Disjunctive Amplification      88 157
Rule of Disjunctive Syllogism      86 88
Rule of Existential Generalization      136
Rule of Existential Specification      136
Rule of product      3 5—8 12 19—24 35 36 145 163 234 246 254 255 261 276 351 353 354 419 591 594
Rule of sum      3 4 6 20 23 145 151 170 263 265 276
Rule of the Constructive Dilemma      88
Rule of the Destructive Dilemma      88
Rule of Universal Generalization      128—132 147
Rule of Universal Specification      124—132 147
Rules of ad Absurdum      87
Rules of Inference      80—83 85 86 88 94 95 124—132 137 147
Rules of Inference, Law of the syllogism      82
Rules of Inference, Modus ponens      80
Rules of Inference, Modus tollens      83
Rules of Inference, Proof by (the method of) contradiction      87
Rules of Inference, Rule for proof by cases      88
Rules of Inference, Rule of conditional proof      88
Rules of Inference, Rule of conjunction      85 88
Rules of Inference, Rule of conjunctive simplification      88
Rules of Inference, Rule of detachment      80 81
Rules of Inference, Rule of disjunctive amplification      88
Rules of Inference, Rule of disjunctive syllogism      86 88
Rules of Inference, Rule of the constructive dilemma      88
Rules of Inference, Rule of the destructive dilemma      88
Rules of Inference, Rule of universal generalization      128—132 147
Rules of Inference, Rule of universal specification      124—132 147
Rules of Inference, Table of rules of inference      88
Russell, Lord Bertrand Arthur William      138 156 177
Russell’s paradox      156 177
Ryser, Herbert John      45 46 428 429 695 696 872 873
S(m, n)      264
S(x, k)      799
Saaty, Thomas L.      695
Sahni, Sartaj      668 670 694 696
Sample space      172 247 262 418 426
Samuel, Pierre      731 732 872 873
Sandier, R.      872 873
Saturated edge      673
Saturated hydrocarbons      598 607 610 611
1 2 3 4 5 6 7 8 9 10
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте