Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Grimaldi R.P. — Discrete and combinatorial mathematics. An introduction
Grimaldi R.P. — Discrete and combinatorial mathematics. An introduction



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Discrete and combinatorial mathematics. An introduction

Автор: Grimaldi R.P.

Аннотация:

This is an excellent book for self study. However, there are parts in this book that must be rearranged or deleted. For example, I think Catalan numbers should be deleted. This might be useful for the matrix chaining problem, but that's in the realms of algorithm design (specifically in dynamic programming). Also, I do not understand why Grimaldi sandwiched in a chapter on Finite State Machines between two chapters on Functions and Relations. Maybe he should make a section on languages for FSMs, but I recommend Sipser's Introduction to the Theory of Computation if you want to learn about FSMs.


Язык: en

Рубрика: Computer science/Дискретная математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 3rd edition

Год издания: 1994

Количество страниц: 1024

Добавлена в каталог: 17.11.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
d(a, b)      658
d(x,y)      798 (see also “Algebraic coding theory”)
Dantzig, G.B.      695
Data structures      245 362 395 396 499 607 620 626 651 720
Date, C.J.      311 312
Dauben, Joseph Warren      311 312
David, Florence Nightingale      179
De Arte Combinatoria      137
de Fermat, Pierre      239 240 730
de Laplace, Pierre Simon      173 457
de Montmort, Pierre Remond      428
DeBruijn, Nicolaas Govert      832
DEC (Digital Equipment Corporation)      5
Decision structure      55
Decision tree      630 631
Decoding algorithm      804 (see also “Algebraic coding theory”)
Decoding function      796 804
Decoding table      807 808
Decoding table with syndromes      809 (see also “Algebraic coding theory”)
Decoding with coset leaders      809 (see also “Algebraic coding theory”)
Decomposition (of a permutation)      815
Decomposition theorem for chromatic polynomials      592
Dedekind domain      731
Dedekind, Richard      240 309 731 831
Deductive reasoning      137
Deficiency of a graph      689
Deficiency of a set of vertices      689
Definition      56 121 123
Deg $(\upsilon)$      550
Deg (R)      566
Degree of a polynomial      835
Degree of a region      566
Degree of a table      273
Degree of a vertex      550
Delays      343
Delong, Howard      139 140
Delta function      606
DeMoivre, Abraham      310 428 456 522
DeMoivre’s Theorem      199 477
DeMorgan, Augustus      138 176 239 241 589
DeMorgan’s Laws for a Boolean algebra      764
DeMorgan’s Laws for Boolean functions      737
DeMorgan’s Laws for Boolean variables      737
DeMorgan’s Laws for logic      63 64 66
DeMorgan’s Laws for set theory      160 162 163 172
DeMorgan’s Laws for set theory (extended)      205 206
Denumerable set      309 A-29
Deo, Narsingh      523 524 599—601
Depth-first index      645
Depth-first search      624 625 628 651
Depth-first search algorithm      624
Depth-first spanning tree      645—647
Derangement      418 419 429
Descendant      615
Design of experiments      853 856 872
Determinant      478 479 A-19-A-21
Dfi $(\upsilon)$      645
Dick, Auguste      731 732
Dickson, Leonard Eugene      240 241
dictionary order      617
Dierckman, Jeffrey S.      651 652
Difference equations      461 523
Differential equations      461
Digital Equipment Corporation      5
Digraph      363 530
Dijkstra, Edsger Wybe      658 694 695
Dijkstra’s Shortest-Path Algorithm      657 665
Dinitz, Jeffrey H.      873
Diophantine equation      230 240
Diophantus      230 239
Direct argument      133
Direct block      17
Direct product of groups      783
Direct proof      133 134
Directed cycle      365 373 532
Directed edge      330 363
Directed Euler circuit      554 555
Directed graph      333 349 357 363—368 372 373 394 395 530 533 657
Directed graph, arcs      330 363
Directed graph, associated undirected graph      364 533
Directed graph, edges      363 530
Directed graph, loop      363 530
Directed graph, nodes      363 530
Directed graph, strongly connected      365 558
Directed graph, vertices      363 530
Directed path      532
Directed tree      614
Directed walk      532
Dirichlet drawer principle      309 (see also “Pigeonhole principle”)
Dirichlet, Peter Gustav Lejeune      309 310 730
Disconnected graph      366 533
Disjoint (sets)      158 171
Disjoint collection of sets      A-34
Disjoint subboards      421
Disjunction      52
Disjunctive normal form (d.n.f.)      740 772
Distance (in a graph)      535 653
Distance (in algebraic coding theory)      798 (see also “Algebraic coding theory”)
Distance function      799 (see also “Algebraic coding theory”)
Distinguishing string      391—393
Distributions      33 35 36 43
Distributive Law of multiplication over addition for integers      132
Distributive Law of multiplication over addition for real numbers      63
Distributive Law of scalar multiplication over matrix addition      A-15
Distributive Laws for a Boolean algebra      762
Distributive Laws for a ring      702
Distributive Laws for Boolean functions      737
Distributive Laws for Boolean variables      737
Distributive Laws for logic      64 65
Distributive Laws for matrix multiplication over matrix addition      A-24
Distributive Laws for set theory      160
div      60 302
Divide-and-conquer algorithms      511—520 523 634
Dividend      216
Divides (for integers)      213
Divides (for polynomials)      839
Divides relation      373 766
Division algorithm, for integers      215—218 225 226 231 253 276 278 293 717 788 789
Division algorithm, for polynomials      839—841 845—847
Division method (for hashing)      720
Divisor for integers      213 216
Divisor for polynomials      839
Divisors of zero; see Proper divisors of zero d.n.f.      740
Doctrine of Chances      428
dodecahedron      568 578 599
Domain (of a function)      252
Domain (of a relational data base)      273
Dombowski, Peter      872 873
Dominance (for functions)      294
Dominance Laws for a Boolean algebra      764
Dominance Laws for Boolean functions      737
Dominance Laws for Boolean variables      737
Dominating set      603 757
Domination Laws for logic      65 67
Domination Laws for set theory      160
Domination number of a graph      630
Don’t care conditions      758—760
Dornhoff, Larry L.      343 344 811 831 832
Dorwart, Harold L.      872 873
Double indirect block      17
Double induction      313
Double Negation      64
Double sum      32
Double summation      32
Doubly linked lists      395
Doubly stochastic matrix      697
Dual code      805 (see also “Algebraic coding theory”)
Dual graph      568 569 571
Dual network      572 573
Dual of a statement      65 161 737 764
Duality in a Boolean algebra      737 764
Duality in logic      65
Duality in set theory      161
Dyck, Walther Franz Anton von      830
Economics      523
Edges      363 530
Edmonds, J.      679
Efficiency of a coding scheme      796 (see also “Algebraic coding theory”)
Eider’s phi function      409—411 720 779
Einstein, Albert      731
Electrical engineering      333
Electrical network      572 573 598 600 607 650
Electron      43
Element argument      147 158 160 161
Elementary event      173
Elementary subdivision      562
Elements      215 232 233 238
Elements of a set      143
Elsayed, E.A.      585 600 601
Embedding      397 560
Empty language      320
Empty set $(\emptyset)$      148
Empty string $(\lambda)$      316
Encoding      795 801 804
Encoding function      795 (see also “Algebraic coding theory”)
Enderton, Herbert B.      179 A-37
Energy state      43
ENIGMA      345
Enumeration      3 23 44 179 403 409 428 433
Epp, Susanna S.      139 140
Equality of Boolean functions      736
Equality of functions      281
Equality of matrices      702 A-14
Equality of polynomials      835
Equality of real numbers      61
Equality of sets      145 146
Equality of strings      317
Equality relation      355 356 382
Equivalence class      383 384 395
Equivalence problem      396
Equivalence relation      349 355 356 368 382—386 388 394—396 717 816 845 871
Equivalence relation, block      382
Equivalence relation, cell      382
Equivalence relation, equivalence class      383 384 395
Equivalence relation, partition      382—386 395
Equivalence relation, Stirling numbers of the second kind      386
EQUIVALENCE statement (in ANSI FORTRAN)      384 385
Equivalent codes      811 (see also “Algebraic coding theory”)
Equivalent finite state machines      336
Equivalent states $s_1Es_2$      350 388
Eratosthenes      239
Erdos, Paul      599
Erlanger Programm      831
Error correction (in a code)      800 (see also “Algebraic coding theory”)
Error detection (in a code)      800 (see also “Algebraic coding theory”)
Error pattern      794 (see also “Algebraic coding theory”)
Euclid      45 215 226 232 233 238 239
Euclidean algorithm, for integers      226—229 293 468 469 522 719
Euclidean algorithm, for polynomials      845
Euclidean geometry      859
Euler circuit      552 578 579
Euler trail      552 553 578 579
Euler, Leonard      309 396 456 457 505 529 551 563 598 730 830 858 872
Euler’s conjecture (Latin squares)      858
Euler’s Theorem on congruence      793
Euler’s Theorem on connected planar graphs      564 598
Even integer      131
Even parity string      342
Even, Shimon      502 523
Event      173
Event Bernoulli trial      173
Event elementary event      173
Eves, Howard      139 140 311 312
Exclusive OR      52 62 434 824
Exclusive or $(\oplus)$ for Boolean functions      745 746
EXCLUSIVE-OR gate      754
Existential generalization      136
Existential quantifier $(\exists)$      100 107
Existential specification      136
Expansion by minors      A-23
Experiment      172 247
Explicit formula      201 202
EXPONENT      A-1—A-4 A-6
Exponential function      418 A-1 A-4—A-6
Exponential generating function      449—453 457 458
Exponential time complexity      296 489
Exponentiation algorithm      302
Extension of a function      257
f is dominated by g      294
f is dominated by g on S      513
f(A)      252
f(x) is congruent to g(x) modulo s(x)      846
Factor of a polynomial      839 841
Factor Theorem      841 842
Factorial      7 206 298
Factorial time complexity      296
Factorization of a polynomial      842
Fallacy      85 128
Fano, Gino      859 872
Feedback network      774
Feit, Walter      831
Feller, William      458 523
Fendel, Daniel      140
Fermat’s Last Theorem      730 731
Fermat’s theorem on congruence      793
Fermi-Dirac model      43
fermions      43
Ferrers, Norman Macleod      457
Ferrer’s graph      448 457
Fibonacci numbers      183 207—209 299 300 456 461 472 476 481 488 489 522 526
Fibonacci relation      472 521
Fibonacci sequence      522
Fibonacci trees      653
Field      706 711 719 731 778 830 839 850 871
Fields (in a record)      720
FIFO structure      626
File structure      17
Filius Bonaccii      456
Finite affine plane      859—864
Finite field      835 840 843 847 849 850 851 871 872
Finite function      245 254 255 262 290 308 343
Finite geometry      835 859 862 865 871 872
Finite induction principle      181 (see also “Mathematical induction”)
Finite induction principle—alternative form      196—199 (see also “Mathematical induction—alternative form”)
Finite projective geometry      872
Finite projective plane      867 872 873
Finite sequence of n terms      A-30
Finite set      144 149 A-28
Finite state machine      315 329—332 335—341 343 349 350 388—393 396 712 746
Finite state machine, $E_1$      388
Finite state machine, $E_k$      388
Finite state machine, 1-equivalent states      350 388
Finite state machine, arc      330
Finite state machine, definition      329
Finite state machine, directed edge      330
Finite state machine, E      388 389
Finite state machine, equivalent machines      336
Finite state machine, equivalent states      350 388
Finite state machine, first level of reachability      350
Finite state machine, input      328
Finite state machine, input alphabet      328 329
Finite state machine, internal states      328 329 388
Finite state machine, k-equivalent states      350 388
Finite state machine, k-unit delay machine      339 343
Finite state machine, Mealy machine      343
Finite state machine, minimal distinguishing string      391—393
Finite state machine, minimization process      388—393
Finite state machine, next state      328
Finite state machine, next state function      329
Finite state machine, one-unit delay machine      339
1 2 3 4 5 6 7 8 9 10
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте