Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Diestel R. — Graph theory
Diestel R. — Graph theory



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Graph theory

Автор: Diestel R.

Аннотация:

Graph Theory can be used at various levels. It contains all the standard basic material to be taught in a first graduate or undergraduate course. For an advanced graduate course, it includes proofs of several fundamental, deeper results, most of which thus appear in a book for the first time. To the professional mathematician, the book offers an overview of graph theory as it stands today: with its typical questions and methods, its classic results, and some of those developments that have made this subject such an exciting area in recent years.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: third edition

Год издания: 2005

Количество страниц: 410

Добавлена в каталог: 25.10.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Thomas, R.      53 71 81 128 137 138 162 175 193 269 270 273 291 322 325 340 341 354 355 356
Thomason, A.G.      170 192 305
Thomasse, S.      246
Thomassen, C.      80 109 122 137 138 171 193 244 247 291 355 356 365
Three colour theorem      113
Three-flow conjecture      157
Threshold function      305—312 313 314
Toft, B.      136 162
Topological connectedness      229 236
Topological cycle space      232—235 248 249
Topological edge      226
Topological end degree      229
Topological end space      226—237 242
Topological Euler tour      244
Topological forest      250
Topological isomorphism      93 94 104
Topological minor      20
Topological minor and planarity      92 96—101
Topological minor and WQO of general graphs      350
Topological minor and WQO of trees      317
Topological minor as order relation      20
Topological minor of all large 2-connected graphs      269
Topological minor vs. ordinary minor      20 97
Topological minor, $K^4$      59 173—174 191 327
Topological minor, $K^5$      92 97 100 101 109 174 193 352
Topological minor, $K^6$ and $K_{3,3}$      92 97 100 101 107 109
Topological minor, $K^r$      70 165 169—172 175 190 191 193—194 252 268 340
Topological minor, $K^{\alehp_0}$      197 205 238 241 341 354
Topological minor, $K_{3,3}$      92 97 100 101 109 191
Topological minor, forced by average degree      70 169—172
Topological minor, forced by chromatic number      175
Topological minor, forced by girth      172 175
Topological minor, induced      170
Topological minor, tree (induced)      169
Topological spanning tree      49 231—237 242 243 250 385
Torso      339—311
Total chromatic number      135
Total colouring      135
Total colouring, conjecture      135 138
Total value of a flow      142
Touching sets      322
Toughness conjecture      218 289 290 291
Tournament      289
Transflnite induction      198—199 359
Transitive graph      52
Travelling salesman problem      290
TREE      13—16
Tree as forced substructure      15 169 190
Tree cover      46—49
Tree, binary      203 238
Tree, infinite      205 228 232 239 242 245 341 356
Tree, level of      15
Tree, normal      15—16 31 155 160 389
Tree, path-width of      352
Tree, spanning      14 16 198 205
Tree, spanning, topological      49 231—237 242 243 250 385
Tree, threshold function for      312
Tree, well-quasi-ordering of trees      317—318
Tree-decomposition      193 319—326 340 341 351 354—355
Tree-decomposition obstructions      322—324 328—329 354 355
Tree-decomposition, induced on minors      320
Tree-decomposition, induced on subgraphs      320
Tree-decomposition, lean      325
Tree-decomposition, part of      319
Tree-decomposition, simplicial      325 339 352 355
Tree-decomposition, width of      321
Tree-order      15
Tree-packing      46—48 52 53 235 249 250
Tree-packing theorem      46 235
Tree-width      321—341
Tree-width and brambles      322—324 353 355
Tree-width and forbidden minors      327—341
Tree-width of a minor      321
Tree-width of a subdivision      351
Tree-width of grid      324 351 354
Tree-width, compactness theorem      354
Tree-width, duality theorem      322—324
Tree-width, finite      341
Tree-width, obstructions to small      322—324 328—329 354 355
triangle      3
Triangulated      see chordai
Triangulation      see plane triangulation
Trivial graph      2
Trotter, W.T.      256 272
Turan graph      165—169 192 379
Turan theorem      165 192 256
Turan, P.      165
Tutte 1-factor theorem      39 53 225
Tutte condition      39—40
Tutte cycle basis theorem      59 249
Tutte decomposition of 2-connected graphs into 3-connected pieces      57
Tutte flow conjectures      156—151 162
Tutte planarity criterion      102 109
Tutte polynomial      162
Tutte tree-packing theorem      46 53—54 235 250
Tutte wheel theorem      58—59 80
Tutte, W.T.      39 46 53 57 58 59 80 102 109 144 147 155 161—162 225 235 250 218 291
Tychonoff's theorem      201 245 381
Ubiquitous      201 240 246
Ubiquitous conjecture      201 240 246
Unbalanced subgraph      312 313 314
Unfriendly partition conjecture      202 245
Uniformity lemma      see regularity lemma
union      3
Unit circle $S^1$      84 361
Universal graphs      212—216 213 240 246
Unmatched      33
Up (-closure)      15
Upper bound      358
Upper density      189
Urquhart, A.      137
Valency (degree)      5
Value of a flow      142
Variance      307
Veldman, H.J.      291
Vella, A.      249
Vertex      2
Vertex cover      34 49—51
Vertex cut      see separator
Vertex duplication      166
Vertex expansion      129
Vertex of a plane graph      86
Vertex space      23
Vertex, colouring      111 114—118
Vertex-chromatic number      111
Vertex-connectivity      11
Vertex-transitive      52 215 239
Vince, A.      314
Vizing, V.G.      119 137 138 376 377 380
Voigt, M.      137—138
Vortex      340 353
Vuskovic, K.      138
Wagner graph      174 325—326 352
Wagner, K.      101 109 174 190 191 193 354—355
Walk      10
Walk length      10
Walk, alternating      64
Walk, closed      10
Wave      217 241
Wave limit      218
Wave, large      218
Wave, maximal      218
Wave, proper      218
Wave, small      218
Weakly perfect      226 242
Well-founded set      358
Well-ordering      358 386
Well-ordering theorem      358
Well-quasi-ordering      316—356
Welsh, D.J.A.      162
Wheel      59 270
Wheel theorem      58—59 80
Whitney, H.      81 96 105
Width of tree-decomposition      321
Wilson, R.J.      32
Winkler, P.      314
Wollan, P.      71 81
Woodrow, R.E.      215 246
Yu, X.      54 291
Zehavi, A.      54
Zorn's lemma      198 237 360
Zykov, A.A.      192
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте