Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Diestel R. — Graph theory
Diestel R. — Graph theory



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Graph theory

Автор: Diestel R.

Аннотация:

Graph Theory can be used at various levels. It contains all the standard basic material to be taught in a first graduate or undergraduate course. For an advanced graduate course, it includes proofs of several fundamental, deeper results, most of which thus appear in a book for the first time. To the professional mathematician, the book offers an overview of graph theory as it stands today: with its typical questions and methods, its classic results, and some of those developments that have made this subject such an exciting area in recent years.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: third edition

Год издания: 2005

Количество страниц: 410

Добавлена в каталог: 25.10.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Grid, canonical subgrid      342
Grid, hexagonal grid      208 209 342—346
Grid, minor      240 324 328—338 354
Grid, theorem      328
Grid, tree-width of      324 351 354
Groetzsch, H.      113 137 157 161
Group-valued flow      144—149 160 161—162
Gruenwald, T.      see Gallai
Gusfleld, D.      53
Guthrie, F.      137
Gyarfas, A.      169 190 194
Hadwiger conjecture      172—115 191 193
Hadwiger, H.      172 193
Hajnal, A.      244 245 249 250 258 272 273
Hajos conjecture      175 193
Hajos construction      117—118
Hajos, G.      118 137 175
Haken, W.      137
Halin, R.      80 206 208 244 245—246 354—355 356
Hall, P.      36 51 53 224
Hamilton circle      278 289 291
Hamilton cycle      275—291
Hamilton cycle and 4-flows      160 278
Hamilton cycle and degree sequence      278—281 289
Hamilton cycle and minimum degree      276
Hamilton cycle and the four colour theorem      278
Hamilton cycle in $G^2$      281—289
Hamilton cycle in $G^3$      290
Hamilton cycle in almost all graphs      305
Hamilton cycle in infinite graph      see Hamilton circle
Hamilton cycle in planar graphs      278
Hamilton cycle, power of      289
Hamilton cycle, sufficient conditions      275—281
Hamilton path      275 280—281 289 290
Hamilton, W.R.      290
Hamiltonian graph      275
Hamiltonian sequence      279
Handle      362 364
Harant, J.      81
head      see terminal vertex
Heawood, P.J.      137 161
Heesch, H.      137
Height      15
Hexagonal grid      208 209 342—346
Higman, D.G.      316 354
Hoffman, A.J.      136
hole      138
Holz, M.      247
Homogeneous graphs      215 240 246
Hoory, S.      10 32
Huck, A.      244
Hypergraph      28
incidence      2
Incidence map      29
Incidence matrix      27
Incidence, encoding of planar embedding      see combinatorial isomorphism
incident      2 88
Incomparability graph      242
Increasing property      305 313
Independence number      126—133
Independence number and connectivity      276—277
Independence number and covers      50 52
Independence number and Hamilton cycles      276—277
Independence number and long cycles      134
Independence number and perfection      132
Independence number of random graph      296 312
Independent edges      3 33—43 52
Independent events      295
Independent paths      7 66—67 677—669 370
Independent vertices      3 50 124 296
Indicator random variable      298 387
Induced subgraph      3—4 68 126 128 132 376
Induced subgraph in Ramsey theory      252 258—268 271
Induced subgraph in random graph      296 313
Induced subgraph of all imperfect graphs      129 135
Induced subgraph of all large connected graphs      268
Induced subgraph of almost all graphs      302 313
Induced subgraph tree      169 190
Induced subgraph, cycle      8 23 31 59 89 102 127 128 249 376 380 385
Induction, transfinite      198—199 359
Induction, Zorn's Lemma      198 237 360
Inductive ordering      199
Infinite graphs      2 19 31 51 110 189 195—250 253 278 289 291 305—306 340—341 349 354 356
Infinite sequence of steps      197 206
Infinite set      357
Infinite set, basic properties      197—198
Infinitely connected      197 237 244
Infinity lemma      200 245 383
Initial segment      358
Initial vertex      28
Inner face      86
Inner point      226
Inner vertex      6
Integral, flow      142 144
Integral, function      142
Interior of a path, $\overset{\circ}{P}$      6—7
Interior of an arc      84
Internally disjoint      see independent
Intersection      3
Intersection graph      352
Interval graph      127 136 352
INTO      319
Invariant      3
Irreducible graph      352
Irving, R.W.      53
Isolated vertex      5 313
Isomorphic      3
Isomorphism      3
Isomorphism of plane graphs      92—96
Isthmus      see bridge
Itai, A.      54
Jaeger, F.      162
Janson, S.      313
Jensen, T.R.      136 162 355
Johnson, D.      356
Join      2
Jonsson, B.      246
Jordan curve theorem      84 109
Jordan, C.      84 86
Jung, H.A.      70 194 205 239 245
k-choosable      121
k-colourable      111 121 201 325
k-constructible      117—118 134 137
k-list-colourable      see k-choosable
k-mesh      329
k-near embedding      340
Kahn, J.      138
Karoriski, M.      314
Kawarabayashi, K.      193
Kelmans, A.K.      102 109—110
Kempe, A.B.      137 290
Kernel of directed graph      124 135
Kernel of incidence matrix      27
Kirchhoff's law      139 140
Klein four-group      151
Kleitman, D.J.      137
Knot theory      162
Knotless graph      349
Kochol, M.      149 162
Koenig, D.      35 53 119 200 245
Koenig, duality theorem      35 49 51 52 63 127 136 223
Koenig, infinity lemma      200 245
Koenigsberg bridges      21
Kohayakawa, Y.      194
Kollar, J.      192
Komlos, J.      192 194 272 289 291
Korman, V.      226
Kostochka, A.V.      170 192 273
Kriesell      53
Kruskal, J.A.      317 354 389
Kuehn, D.      81 172 175 193 194 216 233 246—250
Kuratowski -type characterization      107 270 341—342 355—356
Kuratowski set of graph properties      270
Kuratowski set of graphs      341—342 355
Kuratowski, C.      96—101 109 238 249 356
Kuratowski-theorem for higher surfaces      342
l-edge-connected      12
Lachlan, A.H.      215 246
Large wave      218
Larman, D.G.      70
Latin square      135
Laviolette, F.      250
Leader, I.B.      245 246
Leaf      13 15 31 204
Lean tree-decomposition      325
Lee, O.      54
Length of a cycle      8
Length of a path      6 8
Length of a walk      10
Level      15
LIMIT      199—200 358
Limit wave      218
Line (edge)      2
Line (edge) graph      4 112 136 191
Line (edge) segment      84
Linear algebra      23—28 59—61 101—102 132
Linear decomposition      339—340
Linear programming      161
Linial, N.      10 32
Linkable      219
Linked by a path      6
Linked by an arc      84
Linked k-linked      69—77 80 81 170
Linked k-linked vs. k-connected      69—71 80 81
Linked tree-decomposition      325
Linked vertices      6 84
List colouring      121—126 137—138
List colouring, bipartite graphs      124—126 135
List colouring, Brooks's theorem      137
List colouring, conjecture      124 135 138
List-chromatic index      121 124—126 135 138
List-chromatic number      see choice number
Liu, X.      138
Lloyd, E.K.      32
Locally finite      196 248 249
Logarithms      1
Loop      28
Lovasz, L.      53 129 132 137 138 192
Luczak, T.      313 314
MacLane, S.      101 109—110
Mader, W.      12 32 67—69 80 81 170 190 192 193 355
Magnanti, T.L.      161
Maharry, J.      193
Mani, P.      70
Map colouring      111—113 133 136 152
Markov chain      314
Markov's inequality      297 301 307 309
Marriage theorem      35—36 39 51 53 223—224 238 371
Marriage theorem, stable      38 53 126 383
Matchable      41 223
Matching      33—54
Matching and edge colouring      135
Matching in bipartite graphs      34—39 127
Matching in general graphs      39—43
Matching in infinite graphs      222—226 241—242 247—248
Matching in infinite graphs, partial      224 241
Matching of vertex set      33
Matching, stable      38 51 52 126
Mate, A.      250 272
Matroid theory      54 110 356
Max-flow min-cut theorem      141 143 160 161
Maximal      4
Maximal acyclic graph      14
Maximal element      358 360
Maximal planar graph      96 101 107 109 174 191 374
Maximal plane graph      90 96
Maximal wave      218
Maximum degree      5
Maximum degree and chromatic index      119—121
Maximum degree and chromatic number      115
Maximum degree and list-chromatic index      126 138
Maximum degree and radius      9
Maximum degree and Ramsey numbers      256—257
Maximum degree and total chromatic number      135
Maximum degree, bounded      184 256
Menger, K.      53 62—67 79 81 160 206 216—226 241 246—247
Menger, theorem of      62—67 79 81 160 206—207 216 217 238 246—247
Metrizable      228 242
Milgram, A.N.      50 52 53 54
Milner, E.C.      245
Minimal      4
Minimal cut      25 31 56 104 152
Minimal element      358
Minimal non-planar graph      107
Minimal separator      78
Minimal set of forbidden minors      341 353 355—356
Minimal, connected graph      14
Minimal, k-connected graph      80
Minimum degree      5
Minimum degree and average degree      5
Minimum degree and choice number      121—122
Minimum degree and chromatic number      115 116—117
Minimum degree and circumference      8
Minimum degree and connectivity      12 80 249
Minimum degree and edge-connectivity      12
Minimum degree and girth      8 9 10 170—172 193 301
Minimum degree and linkability      71
Minimum degree, forcing Hamilton cycle      276 289
Minimum degree, forcing long cycles      8
Minimum degree, forcing long paths      8 30
Minimum degree, forcing short cycles      10 171—172 175 301
Minimum degree, forcing trees      15
Minor      18—21 20 169—172
Minor and planarity      96—101 107
Minor and WQO      315—356 (see also topological minor)
Minor of all large 3- or 4-connected graphs      269—270
Minor of multigraph      29
Minor Petersen graph      156
Minor relation      20 31 207 216 240 246 270 321 342
Minor theorem      315 341—349 342 354—355
Minor theorem for trees      317—318
Minor theorem, proof      342—348
Minor vs. topological minor      20—21 97
Minor, $K^4$      173 327
Minor, $K^5$      174 193 352
Minor, $K^5$ and $K_{3,3}$      96—101
Minor, $K^6$      175
Minor, $K^r$      170 171 172 190 191 193—194 313 340 353 354
Minor, $K^{\aleph_0}$      341 354
Minor, $K_{3,3}$      109 191
Minor, excluded      see forbidden
Minor, forbidden      172—175 216 244 327—349 352 354—356
Minor, forced      171 172 169—175
Minor, incomplete      192
Minor, infinite      197 207—208 216 240 244 245 246 248—249 354 356
Minor, proper      349
Minor-closed graph property      327 341—349 352
Moebius crown      269—270
Moebius ladder      174
Moebius strip      362
Mohar, B.      109 137 193 356
Moment, first      see Markov's inequality
Moment, second      306—312
Monochromatic (in Ramsey theory), (vertex) set      253—255
Monochromatic (in Ramsey theory), induced subgraph      257—268
Monochromatic (in Ramsey theory), subgraph      253 255—257
Moore bound      10 32
Multigraph      28—30
Multigraph, cubic      44 52 157 282
Multigraph, list chromatic index of      138
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте