Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ayers J. — Neurotechnology for biomimetic robots
Ayers J. — Neurotechnology for biomimetic robots



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Neurotechnology for biomimetic robots

Автор: Ayers J.

Аннотация:

The goal of neurotechnology is to confer the performance advantages of animal systems on robotic machines. Biomimetic robots differ from traditional robots in that they are agile, relatively cheap, and able to deal with real-world environments. The engineering of these robots requires a thorough understanding of the biological systems on which they are based, at both the biomechanical and physiological levels.
This book provides an in-depth overview of the field. The areas covered include myomorphic actuators, which mimic muscle action; neuromorphic sensors, which, like animal sensors, represent sensory modalities such as light, pressure, and motion in a labeled-line code; biomimetic controllers, based on the relatively simple control systems of invertebrate animals; and the autonomous behaviors that are based on an animal’s selection of behaviors from a species-specific behavioral "library." The ultimate goal is to develop a truly autonomous robot, one able to navigate and interact with its environment solely on the basis of sensory feedback without prompting from a human operator.


Язык: en

Рубрика: Технология/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2002

Количество страниц: 636

Добавлена в каталог: 16.10.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Underwater robots, undulating      265
Underwater robots, water temperature      123 126 128
Undulation and power      149
Undulation and snake robots      264 274 275 281 282
Undulation in lampreys      285—288
Undulation in lobster robot      245
Undulation in scorpion robot      434 435 436 437
Unit cells, of muscle      175—179 181
Uropod      252
Valves and molecular sensors      495
Valves for cricket robot      414
Valves for gas waste      492
Vapors, odor ant stimulus      97—100
Vectors in force-field primitives      227—228
Vectors, homing      517 519—529
Velcro      494
Velocity and actuators      244
Velocity and chemo-orientation      555
Velocity and height      600—604
Velocity and lift and drag      476
Velocity and muscle      142( table)
Velocity and saccades      577
Velocity in force field primitives      227
Velocity of descent      602 606—607
Velocity of dolphin robots      316—318 321
Velocity of Entomopter      502
Velocity of flight (bees)      595—598
Velocity of flow      26 581
Velocity of retinal image motion      594—595
Velocity of RoboTuna      301 304—305 306
Velocity, angular, measuring      61—62
Velocity, angular, of visual image      44—45 58—65 596 600—606
Velocity, in walking, and cockroach robot      368
Velocity, in walking, and energy      360—361
Velocity, in walking, and legged robots      414 422
Velocity, in walking, and step amplitude      397
Velocity, in walking, angular, of joint movement      391 392 433—436 437
Velocity, in walking, angular, of joints      392
Velocity, in walking, contraction speeds      453
Velocity, in walking, during swing      371
Velocity, in walking, first-order dynamics      380n2
Velocity, in walking, leg liftoff      368
Velocity, in walking, of joints in stance      433—436
Velocity, in walking, of quadruped      201
Velocity, in walking, phase regulation      366 370
Velocity, in walking, quasi-static reflexes      368
Velocity, in walking, running      353 371 395
Velocity, in walking, scorpion robot      433—436 443 444
Velocity, in walking, tetrapod gait      395
Vestibulo-ocular reflex (VOR)      74
Vibrating      8—9
Vibrations and motor primitives      230
Vibrations and quadruped robot      189 195
Vibrations and visual sensors      86—93
video cameras      606
Videos of bees      596 599
Videos of cockroach legs      404
Videos of fruit fly paths      574
Videos of lampreys      264—265 287
Videos of lobsters      252
Viscoelasticity of actuators      158—159 164
Viscoelasticity of muscle      144 150—151
Vision      see also "Contrast" "Eye "Oculomotor "Photoreceptors" "Sensory
Vision and flight      573
Vision of flies      31—35 573 580—583 598
Vision of insects      593
Vision, asymmetric      49 50—51
Vision, colors      33
Vision, fixation      586 587—588
Vision, human      73—76
Vision, machine      87
Vision, retinal image      74 594—595
Vision, spatial      87—88
Visual inertial feedback      67—69
Visual pattern memory      517
Visual sensors, obstacles      94
Visual sensors, vibration-based      86—93
Visual-motor coordination      83—84 574—576
VLSI (very large-scale integration) in cricket robot      543
VLSI (very large-scale integration) in Koala robot      544
VLSI (very large-scale integration) in vision sensors      39—42 76 94
Voltage and dielectric actuators      180
Voltage and homing      518
Voltage and piezoelectric actuator      191 197—201
Voltage and snake robots      283
Voltage in vision robot      39 50
Voltage, dielectric actuators      153—154 180
Voltage, pull-in      176—177 181—182
Volume      187 190
Volume-specific power      190
Vortices and wakes      299 490
Vortices, leading-edge      488—490 492
Vortices, shedding      265 472
Vorticity propulsion      265 298—299 307 see
Wakeless propulsion      291—292
Wakes      299 470 490
Walking      see also "Gaits"
Walking vs. flight      451—457
Walking, commands for      372 398
Walknet      266 389
Walknet, stance      388—392 398
Walknet, swing      392—394 398
Waste, reuse      484 492 499 502
Water, currents      249 330—332 340—342
Water, depth      301
Water, temperature      123 126 128
Water, turbulence      557 559—561
Waves, frequency-modulated      482 484 496 499
Waves, metachronal      395
Waves, sine      91—92
Waves, sinusoidal      274
weapons      6
Weight      283
Wheatstone bridge      14
Wheels on snake robots      277—281
Wheels vs. legs      401
Wiggling      429
Wind      595—596
Wind hairs      455
Wings and equilibrium      574 585—586 589
Wings in hawkmoth flight      463
Wings of Entomopter      481 484 487 490—493
Wings of fruit fly      574 585—586 589
Wings, fixed vs. rotary      489
Wings, flapping      164—166 263
Wings, leading edge      488—490 492
Wings, length      490
Wings, lift      263 267 470 472
Wings, nontwisting      267
Wings, rotation      453 470—471
Wings, X-wing design      491
Wiping reflex      227 230 232 234
Work loops and muscle      146 147 149—150 159—160 162
Work loops, defined      146
Work output of dolphin robot      315
Work output of muscle      149—150
Work, models for      359—361
X-wing design      491
Xylene      106—107
Yaw and Bass II      332—333 334—335 344—345
Yaw and dolphin robot      320
Yaw and fruit fly      584 585 590
Yaw and hawkmoth      461—463
Yaw and miniature aircraft      58 65 66
Yaw and optic flow feedback      49—50 51
Yaw and pectoral fins      332 334—335 336
Yaw and rheotaxis      255
Yaw and saccades      577
Yaw state analysis      252
Yaw, coding for      257
Yaw, modulation      255
Zigzag      306
1 2 3 4 5 6 7
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте