Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Ayers J. — Neurotechnology for biomimetic robots
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Neurotechnology for biomimetic robots
Àâòîð: Ayers J.
Àííîòàöèÿ: The goal of neurotechnology is to confer the performance advantages of animal systems on robotic machines. Biomimetic robots differ from traditional robots in that they are agile, relatively cheap, and able to deal with real-world environments. The engineering of these robots requires a thorough understanding of the biological systems on which they are based, at both the biomechanical and physiological levels.
This book provides an in-depth overview of the field. The areas covered include myomorphic actuators, which mimic muscle action; neuromorphic sensors, which, like animal sensors, represent sensory modalities such as light, pressure, and motion in a labeled-line code; biomimetic controllers, based on the relatively simple control systems of invertebrate animals; and the autonomous behaviors that are based on an animal’s selection of behaviors from a species-specific behavioral "library." The ultimate goal is to develop a truly autonomous robot, one able to navigate and interact with its environment solely on the basis of sensory feedback without prompting from a human operator.
ßçûê:
Ðóáðèêà: Òåõíîëîãèÿ /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2002
Êîëè÷åñòâî ñòðàíèö: 636
Äîáàâëåíà â êàòàëîã: 16.10.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Controllers of scorpion robot 424—426 440—445 446
Controllers, distributed 409 410 424—425 see
Controllers, neural-circuit-based 242—243
Controllers, open- and closed-loop 266 267 357—358
Controllers, parallel command 245—249
Controllers, proportional-derivative 354
Controllers, Raibert-style 368
Controllers, supervising 256
Coordination see also "Feedback" "Reflexes"
Coordination in fruit fly 574—576
Coordination in RHex robot 353—355 363—375
Coordination of limbs 266 353—355 385—388 409
Coordination vs. reflex 357—358 363—367 373—375 440—441
Coordination, CPG-driven 362—363 371—373
Coordination, dynamic reflex 367—375
Coordination, visual-motor 83—84 574—576
Cord mechanism, active 277
Corrections and controllers 9
Corrections of asymmetric vision 49 50—51
Corrections of descent speed 606
Corrections of flight path 487
Corrections of motor primitives 227 229—230
Corrections of underwater robots 254
Corrections, on-line 227 229—230 254
Corrections, optomotor 543—544
Corrections, recovery 397
Correlation, delay and 36—42 581
Corridors 596—598
Coupling mechanisms 385—387 388
CPG see "Central pattern generators"
Crawling 493—495
Cricket robot see also "Koala robot"
Cricket robot and sound, model 534—538
Cricket robot and sound, neural network 535—538
Cricket robot, legs 414 550
Cricket robot, optomotor response 543—548 550
Cricket robot, testing 538—543
Crickets 515 533—534 547
Current pulses 242 243 244
Currents (Water) 249 330—332 340—342
Currents (water), turbulent 557 559—561
Curvature 20—21 289 see
Curves, negotiating 391—392 396—397 see
Damping and cockroach robot 361 379
Damping and cockroaches 140 151
Damping and mesoscale quadruped 189 192—193
Damping and RoboFly 476
Damping and scorpion robot 428 429
Damping by muscle 140—141 145 151
Damping, piezoelectric 190
Dashpots 459
Decision system 233—236
Defensive grooming 236
Delay and correlation (DC) 36—42 581
Depth and bass robot 340 344
Depth and RoboTuna 301 304
Descent speed 602 606—607
Design for adaptivity 420
Design for environmental tolerance 419
Design points 427
Detwinning 118
Development, of legged robots 401—405 414
Diaphragm 168 169
Dielectric elastomers and artificial muscle 152—158
Dielectric elastomers and biomimetic robots 178
Dielectric elastomers and flapping wing robot 165
Dielectric elastomers and inch worm robot 168
Dielectric elastomers and serpentine robot 166
Dielectric elastomers, fabrication with 179—181
Difference vector 519
Direction see also "Turns"
Direction and Entomopter 485—486
Direction and lobsters 246—248 558
Direction and magnetic field 513
Direction and odor 558
Direction and sound 534—535 538
Direction and underwater robots 243 246—249
Direction in insects 391 398 547
Direction in oculomotor system 80
Direction in quadruped 189 197 201 202
Direction, analysis 252
Direction, bias 547
Direction, coding 80
Directional selectivity 61
Displacement and muscle 123—124 126 128 142(table) 178
Displacement and obstacle sensing 444
Displacement and pressure 178
Displacement and RoboFly 477
Displacement and temperature 128
Displacement vs. maneuverability 298
Displacement, amplification 191
Displacement, piezoelectric actuator 190—191
Displacement, sensing 424
Distance and homing 527—528
Distance and insect vision 593
Distance and insect walk 394
Distance and saccades 577
Distance and visual contrast 63—65 586—588
Distance and visual fixation 587—588
Distance, flown, over time 603—604
Distance, gradient descent 527—530
Distributed controllers and tripod gait 409 410
Distributed controllers in hexapod 390—394
Distributed controllers in stick insect robot 266 359 385—391
Distributed controllers, hardware 424—425
Distributed controllers, hierarchical 409
Distributed controllers, problems 390—394
Distributed controllers, stance control 410
Dive-plane control 303
docking 330 606
Dolphin robots, design 310—313 318—320
Dolphin robots, drag 315—316 322
Dolphin robots, efficiency 315 322—323
Dolphin robots, joints 310—313 316—318 318—320
Dolphin robots, swimming 313—318 321—323
Dolphins 265
Doppler effect 496
Drag and dolphin robot 265 315—316
Drag and insect size 490
Drag and tails 163
Drag and tuna model 298 299
Drag and velocity 476
Drift 58 332 547
Drive system 192—193
Duration, operating 201
Dust 189—190
Dust devils 505
Duty ratio 291
Dynamic similarity 564
Earthquakes 268 271—273
Eels 283 see
Efficiency and motion frequency 322—323
Efficiency of dolphin robot 315—318 322—323
Efficiency of Entomopter 499
Efficiency of lamprey robot 292
Efficiency of locomotion 188—189 190 192
Efficiency of muscle 152—153
Elasticity in mesoscale quadruped 189
Elasticity in muscle 150—151 158—159 164
Elasticity, pseudoelasticity 118—119
Elastomers see "Dielectric elastomers"
Electrodes, for polymer muscles 153—154 176—177 180—181
Elementary motion detectors (EMDs) 34 45 581 582 see
elevators 247 459
Encoding see "Coding"
Energy see also "Power"
Energy and Entomopter 484—487 488 499 502
Energy and flight 465
Energy and force-fields 228
Energy and insects 492
Energy and mesoscale robots 187 188—189 192
Energy and motor primitives 228 236
Energy and muscle 141 142(table) 152 162 177—178
Energy and phase regulation 359—361
Energy and piezoelectric ceramics 190 486
Energy and RoboFly 476—477
Energy and sidewinding 274
Energy as design factor 220
Energy, and cockroach robot 359—361 362 366 368—371 379n1
Energy, artificial function 370—371
Energy, reciprocating chemical 485—487
Energy, recycled waste 484 492 496 499
Energy, saturated 366
Energy, silicon device 188—189
Energy, storage 492
Energy, transfer of 266
Engineering see also "Reverse engineering"
Engineering, neural 5—10
Entomopter, altitude 497 503
Entomopter, crawling 493—495
Entomopter, energy 484—487 488 499 503
Entomopter, fabrication 492
Entomopter, flight 482 484 487 488—493
Entomopter, homing 495
Entomopter, hovering 502
Entomopter, indoor use 482—484
Entomopter, landing and take-off 503
Entomopter, Mars exploration 499—507
Entomopter, navigation 495—499
Entomopter, size 490 503
Entomopter, steering 494—495
Entomopter, system design 484—488
Entomopter, weight 488
Environment and cockroach robot 362—363
Environment and feedback loop 46
Environment of Mars 501—502
Environment, indoor 483 490 495 576
Environment, mapping 423—424
Environment, response to 243 254 357—358
Environmental tolerance and muscle 142(table)
Environmental tolerance, design for 419
Equilibrium 583—585
Etching, oxygen plasma 180
Euler-Bernoulli theory 18
Event stack 254 256
Evolution see "Genetic algorithms" "Learning"
Exoskeleton 412
Expansion, optic 581—583 585 599
Explosives, detection of 106 108 111
Eye movements see also "Oculomotor systems"
Eye movements and contrasts 63—65 67—70 85—86
Eye movements and motion information 35—42
Eye movements of flies 31—35
Eye movements, human 73—76
Eye movements, position sensing 62—65
Eye movements, variable speed scanning 57—65
Eyes of flies 573 580—583
Eyes of human beings 73—76
Fault tolerance 176 182—183 419
FD cells 587
Feathering motion 326 327 330 337
Feed-forward control and CPG 357—358 359 362—363 371—375
Feed-forward control in Walknet 394
Feedback see also "Optomotor control"
Feedback and actuators 7—8
Feedback and cockroach robot 355 363—365 371—375
Feedback and CPG 440
Feedback and distributed control 390—394
Feedback and motor control 230 231 241
Feedback and phase regulation 361—365
Feedback and reflexes 357—358
Feedback and sensors 6—7
Feedback for RoboTuna 303
Feedback from compass 303
Feedback from optic flow 43—48 49—50 50—51
Feedback in fruit fly 583—585 589
Feedback in oculomotor system 86
Feedback in pneumatic system 406 412
Feedback in sensory fusion 583—585
Feedback in underwater robot 255
Feedback, negative 396 399 410 412
Feedback, olfactory 109
Feedback, positive 395—396 398—399 410 412
Feedback, visual inertial 67—68
Field-effect transistors 40—41
Filtering and SMA actuator 124
Filtering, band-pass 391
Filtering, low-pass 37 41 50
Filtering, sensory 6—7
Finite element analysis (FEA) 177
Fins see also "Pectoral fins"
Fins and airfoil theory 309
Fins of dolphin robot 310—313 321
Fins of RoboTuna 302 303—304
Fins of tunas 303
Fins, caudal 309
Fins, effect of 265
First order systems 360 380n2
FISH 9 265 see "Tunas"
Fixation behavior 586
Fixation, visual 586 587—588
Fixations 73—74 83
Fixed-pattern noise 88
Flapping and Entomopter 481 484 487
Flapping and power 149
Flapping, fins 326 327 337 338—340 341
Flapping, wings 164—166 263
Flies see also "Blowflies" "Fruit
Flies, behaviors 35
Flies, eyes of 573 580—583
Flies, landing 35 598
Flies, myogenic flight 457
Flies, optomotor control 42—43
Flies, vision 7 31—35 see
Flight see also "Landings" "Lift"
Flight and center of mass 379
Flight and stretch 457
Flight and vision see "Sensory fusion"
Flight in insects 453—457 469—475
Flight of bees 594 600—604
Flight of Entomopter 488—493
Flight of fruit flies 589—590
Flight of hawkmoth 453—454 457—463
Flight, aerodynamics 470—471
Flight, altitude 497 503
Flight, computer-controlled 463—466
Flight, flapping-wing robot 164—166
Flight, horizontal, and speed 600—604
Flight, hovering 502
Flight, motor output 459—466
Flight, muscle control 453—454 457
Flight, myogenic 457 458
Flight, neurogenic 453—457 see
Flight, path adjustment 487
Flight, phase change 453—454
Flight, posture in 574
Flight, stabilization 35 43
Flow control, active 484 487 497
Flow of air 28 490
Flow of water (plume tracking) 559 564
Flow sensors and moment 24—25 26
Flow sensors in lobster robot 561—562
Flow sensors, NUMEM process 26—27
Flow sensors, packaging 27
Flow sensors, paddle design 25 26—27
Flow sensors, sensitivity 23
Flow sensors, switches 23—26 27 28—29
Flow sensors, testing 27—29
Flow sensors, types 23
Flow velocity 26 581
Ðåêëàìà