Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Ayers J. — Neurotechnology for biomimetic robots
Ayers J. — Neurotechnology for biomimetic robots



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Neurotechnology for biomimetic robots

Àâòîð: Ayers J.

Àííîòàöèÿ:

The goal of neurotechnology is to confer the performance advantages of animal systems on robotic machines. Biomimetic robots differ from traditional robots in that they are agile, relatively cheap, and able to deal with real-world environments. The engineering of these robots requires a thorough understanding of the biological systems on which they are based, at both the biomechanical and physiological levels.
This book provides an in-depth overview of the field. The areas covered include myomorphic actuators, which mimic muscle action; neuromorphic sensors, which, like animal sensors, represent sensory modalities such as light, pressure, and motion in a labeled-line code; biomimetic controllers, based on the relatively simple control systems of invertebrate animals; and the autonomous behaviors that are based on an animal’s selection of behaviors from a species-specific behavioral "library." The ultimate goal is to develop a truly autonomous robot, one able to navigate and interact with its environment solely on the basis of sensory feedback without prompting from a human operator.


ßçûê: en

Ðóáðèêà: Òåõíîëîãèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2002

Êîëè÷åñòâî ñòðàíèö: 636

Äîáàâëåíà â êàòàëîã: 16.10.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Controllers of scorpion robot      424—426 440—445 446
Controllers, distributed      409 410 424—425 see
Controllers, neural-circuit-based      242—243
Controllers, open- and closed-loop      266 267 357—358
Controllers, parallel command      245—249
Controllers, proportional-derivative      354
Controllers, Raibert-style      368
Controllers, supervising      256
Coordination      see also "Feedback" "Reflexes"
Coordination in fruit fly      574—576
Coordination in RHex robot      353—355 363—375
Coordination of limbs      266 353—355 385—388 409
Coordination vs. reflex      357—358 363—367 373—375 440—441
Coordination, CPG-driven      362—363 371—373
Coordination, dynamic reflex      367—375
Coordination, visual-motor      83—84 574—576
Cord mechanism, active      277
Corrections and controllers      9
Corrections of asymmetric vision      49 50—51
Corrections of descent speed      606
Corrections of flight path      487
Corrections of motor primitives      227 229—230
Corrections of underwater robots      254
Corrections, on-line      227 229—230 254
Corrections, optomotor      543—544
Corrections, recovery      397
Correlation, delay and      36—42 581
Corridors      596—598
Coupling mechanisms      385—387 388
CPG      see "Central pattern generators"
Crawling      493—495
Cricket robot      see also "Koala robot"
Cricket robot and sound, model      534—538
Cricket robot and sound, neural network      535—538
Cricket robot, legs      414 550
Cricket robot, optomotor response      543—548 550
Cricket robot, testing      538—543
Crickets      515 533—534 547
Current pulses      242 243 244
Currents (Water)      249 330—332 340—342
Currents (water), turbulent      557 559—561
Curvature      20—21 289 see
Curves, negotiating      391—392 396—397 see
Damping and cockroach robot      361 379
Damping and cockroaches      140 151
Damping and mesoscale quadruped      189 192—193
Damping and RoboFly      476
Damping and scorpion robot      428 429
Damping by muscle      140—141 145 151
Damping, piezoelectric      190
Dashpots      459
Decision system      233—236
Defensive grooming      236
Delay and correlation (DC)      36—42 581
Depth and bass robot      340 344
Depth and RoboTuna      301 304
Descent speed      602 606—607
Design for adaptivity      420
Design for environmental tolerance      419
Design points      427
Detwinning      118
Development, of legged robots      401—405 414
Diaphragm      168 169
Dielectric elastomers and artificial muscle      152—158
Dielectric elastomers and biomimetic robots      178
Dielectric elastomers and flapping wing robot      165
Dielectric elastomers and inch worm robot      168
Dielectric elastomers and serpentine robot      166
Dielectric elastomers, fabrication with      179—181
Difference vector      519
Direction      see also "Turns"
Direction and Entomopter      485—486
Direction and lobsters      246—248 558
Direction and magnetic field      513
Direction and odor      558
Direction and sound      534—535 538
Direction and underwater robots      243 246—249
Direction in insects      391 398 547
Direction in oculomotor system      80
Direction in quadruped      189 197 201 202
Direction, analysis      252
Direction, bias      547
Direction, coding      80
Directional selectivity      61
Displacement and muscle      123—124 126 128 142(table) 178
Displacement and obstacle sensing      444
Displacement and pressure      178
Displacement and RoboFly      477
Displacement and temperature      128
Displacement vs. maneuverability      298
Displacement, amplification      191
Displacement, piezoelectric actuator      190—191
Displacement, sensing      424
Distance and homing      527—528
Distance and insect vision      593
Distance and insect walk      394
Distance and saccades      577
Distance and visual contrast      63—65 586—588
Distance and visual fixation      587—588
Distance, flown, over time      603—604
Distance, gradient descent      527—530
Distributed controllers and tripod gait      409 410
Distributed controllers in hexapod      390—394
Distributed controllers in stick insect robot      266 359 385—391
Distributed controllers, hardware      424—425
Distributed controllers, hierarchical      409
Distributed controllers, problems      390—394
Distributed controllers, stance control      410
Dive-plane control      303
docking      330 606
Dolphin robots, design      310—313 318—320
Dolphin robots, drag      315—316 322
Dolphin robots, efficiency      315 322—323
Dolphin robots, joints      310—313 316—318 318—320
Dolphin robots, swimming      313—318 321—323
Dolphins      265
Doppler effect      496
Drag and dolphin robot      265 315—316
Drag and insect size      490
Drag and tails      163
Drag and tuna model      298 299
Drag and velocity      476
Drift      58 332 547
Drive system      192—193
Duration, operating      201
Dust      189—190
Dust devils      505
Duty ratio      291
Dynamic similarity      564
Earthquakes      268 271—273
Eels      283 see
Efficiency and motion frequency      322—323
Efficiency of dolphin robot      315—318 322—323
Efficiency of Entomopter      499
Efficiency of lamprey robot      292
Efficiency of locomotion      188—189 190 192
Efficiency of muscle      152—153
Elasticity in mesoscale quadruped      189
Elasticity in muscle      150—151 158—159 164
Elasticity, pseudoelasticity      118—119
Elastomers      see "Dielectric elastomers"
Electrodes, for polymer muscles      153—154 176—177 180—181
Elementary motion detectors (EMDs)      34 45 581 582 see
elevators      247 459
Encoding      see "Coding"
Energy      see also "Power"
Energy and Entomopter      484—487 488 499 502
Energy and flight      465
Energy and force-fields      228
Energy and insects      492
Energy and mesoscale robots      187 188—189 192
Energy and motor primitives      228 236
Energy and muscle      141 142(table) 152 162 177—178
Energy and phase regulation      359—361
Energy and piezoelectric ceramics      190 486
Energy and RoboFly      476—477
Energy and sidewinding      274
Energy as design factor      220
Energy, and cockroach robot      359—361 362 366 368—371 379n1
Energy, artificial function      370—371
Energy, reciprocating chemical      485—487
Energy, recycled waste      484 492 496 499
Energy, saturated      366
Energy, silicon device      188—189
Energy, storage      492
Energy, transfer of      266
Engineering      see also "Reverse engineering"
Engineering, neural      5—10
Entomopter, altitude      497 503
Entomopter, crawling      493—495
Entomopter, energy      484—487 488 499 503
Entomopter, fabrication      492
Entomopter, flight      482 484 487 488—493
Entomopter, homing      495
Entomopter, hovering      502
Entomopter, indoor use      482—484
Entomopter, landing and take-off      503
Entomopter, Mars exploration      499—507
Entomopter, navigation      495—499
Entomopter, size      490 503
Entomopter, steering      494—495
Entomopter, system design      484—488
Entomopter, weight      488
Environment and cockroach robot      362—363
Environment and feedback loop      46
Environment of Mars      501—502
Environment, indoor      483 490 495 576
Environment, mapping      423—424
Environment, response to      243 254 357—358
Environmental tolerance and muscle      142(table)
Environmental tolerance, design for      419
Equilibrium      583—585
Etching, oxygen plasma      180
Euler-Bernoulli theory      18
Event stack      254 256
Evolution      see "Genetic algorithms" "Learning"
Exoskeleton      412
Expansion, optic      581—583 585 599
Explosives, detection of      106 108 111
Eye movements      see also "Oculomotor systems"
Eye movements and contrasts      63—65 67—70 85—86
Eye movements and motion information      35—42
Eye movements of flies      31—35
Eye movements, human      73—76
Eye movements, position sensing      62—65
Eye movements, variable speed scanning      57—65
Eyes of flies      573 580—583
Eyes of human beings      73—76
Fault tolerance      176 182—183 419
FD cells      587
Feathering motion      326 327 330 337
Feed-forward control and CPG      357—358 359 362—363 371—375
Feed-forward control in Walknet      394
Feedback      see also "Optomotor control"
Feedback and actuators      7—8
Feedback and cockroach robot      355 363—365 371—375
Feedback and CPG      440
Feedback and distributed control      390—394
Feedback and motor control      230 231 241
Feedback and phase regulation      361—365
Feedback and reflexes      357—358
Feedback and sensors      6—7
Feedback for RoboTuna      303
Feedback from compass      303
Feedback from optic flow      43—48 49—50 50—51
Feedback in fruit fly      583—585 589
Feedback in oculomotor system      86
Feedback in pneumatic system      406 412
Feedback in sensory fusion      583—585
Feedback in underwater robot      255
Feedback, negative      396 399 410 412
Feedback, olfactory      109
Feedback, positive      395—396 398—399 410 412
Feedback, visual inertial      67—68
Field-effect transistors      40—41
Filtering and SMA actuator      124
Filtering, band-pass      391
Filtering, low-pass      37 41 50
Filtering, sensory      6—7
Finite element analysis (FEA)      177
Fins      see also "Pectoral fins"
Fins and airfoil theory      309
Fins of dolphin robot      310—313 321
Fins of RoboTuna      302 303—304
Fins of tunas      303
Fins, caudal      309
Fins, effect of      265
First order systems      360 380n2
FISH      9 265 see "Tunas"
Fixation behavior      586
Fixation, visual      586 587—588
Fixations      73—74 83
Fixed-pattern noise      88
Flapping and Entomopter      481 484 487
Flapping and power      149
Flapping, fins      326 327 337 338—340 341
Flapping, wings      164—166 263
Flies      see also "Blowflies" "Fruit
Flies, behaviors      35
Flies, eyes of      573 580—583
Flies, landing      35 598
Flies, myogenic flight      457
Flies, optomotor control      42—43
Flies, vision      7 31—35 see
Flight      see also "Landings" "Lift"
Flight and center of mass      379
Flight and stretch      457
Flight and vision      see "Sensory fusion"
Flight in insects      453—457 469—475
Flight of bees      594 600—604
Flight of Entomopter      488—493
Flight of fruit flies      589—590
Flight of hawkmoth      453—454 457—463
Flight, aerodynamics      470—471
Flight, altitude      497 503
Flight, computer-controlled      463—466
Flight, flapping-wing robot      164—166
Flight, horizontal, and speed      600—604
Flight, hovering      502
Flight, motor output      459—466
Flight, muscle control      453—454 457
Flight, myogenic      457 458
Flight, neurogenic      453—457 see
Flight, path adjustment      487
Flight, phase change      453—454
Flight, posture in      574
Flight, stabilization      35 43
Flow control, active      484 487 497
Flow of air      28 490
Flow of water (plume tracking)      559 564
Flow sensors and moment      24—25 26
Flow sensors in lobster robot      561—562
Flow sensors, NUMEM process      26—27
Flow sensors, packaging      27
Flow sensors, paddle design      25 26—27
Flow sensors, sensitivity      23
Flow sensors, switches      23—26 27 28—29
Flow sensors, testing      27—29
Flow sensors, types      23
Flow velocity      26 581
1 2 3 4 5 6 7
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå