Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Ayers J. — Neurotechnology for biomimetic robots
Ayers J. — Neurotechnology for biomimetic robots



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Neurotechnology for biomimetic robots

Àâòîð: Ayers J.

Àííîòàöèÿ:

The goal of neurotechnology is to confer the performance advantages of animal systems on robotic machines. Biomimetic robots differ from traditional robots in that they are agile, relatively cheap, and able to deal with real-world environments. The engineering of these robots requires a thorough understanding of the biological systems on which they are based, at both the biomechanical and physiological levels.
This book provides an in-depth overview of the field. The areas covered include myomorphic actuators, which mimic muscle action; neuromorphic sensors, which, like animal sensors, represent sensory modalities such as light, pressure, and motion in a labeled-line code; biomimetic controllers, based on the relatively simple control systems of invertebrate animals; and the autonomous behaviors that are based on an animal’s selection of behaviors from a species-specific behavioral "library." The ultimate goal is to develop a truly autonomous robot, one able to navigate and interact with its environment solely on the basis of sensory feedback without prompting from a human operator.


ßçûê: en

Ðóáðèêà: Òåõíîëîãèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2002

Êîëè÷åñòâî ñòðàíèö: 636

Äîáàâëåíà â êàòàëîã: 16.10.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Locomotion      see also "Climbing" "Flight" "Insect-like "Mesoscale "Muscle"
Locomotion and cockroach robot      355—357
Locomotion and curves      391 396—397
Locomotion and plume tracking      562—563
Locomotion and water currents      249
Locomotion in insects      451—456
Locomotion in nature      263
Locomotion of snakes      273—275
Locomotion vs. flight      451—456
Locomotion, actuators      243—245
Locomotion, bipedal      355—357 364—368 371—375 377—379
Locomotion, controllers      235—236 355—357
Locomotion, diagonal      249
Locomotion, efficiency      188—189 190 192
Locomotion, lateral      443
Locomotion, mathematical models      355—357
Locomotion, multimodic      see "Entomopter"
Locomotion, running      371
Locomotion, swing-phase      371 379 385—387
Locomotion, undulatory      245 264
Locomotion, walking      372 398
Locusts      440 456 463
Logic pins      256—257
Low-pass filtering      37 41 50
Lubricants      503
Lycra      291
Machining      see "NUMEM process"
Magnetic fields      459 513
Magnetoresistive sensor      62
Maneuverability and pectoral fins      325—335
Maneuverability of RoboTuna      298 305—306
Maneuverability vs. displacement      298
Manipulator, for underwater robot      333—335
Maps      80—82
MARS      499—507
MARS (mesoscaled aerial robots)      see "Entomopter"
Martensites      118—119
Mass and inertia      429
Mass, center of      378—379 407
materials      see also "Specific materials"
Materials and flow sensors      25—26
Materials for bass robot      329
Materials for dolphin robots      313 318—320
Materials for Entomopter      486 492 494
Materials for lamprey robots      288—291
Materials for legged robot      404—405 412
Materials for miniature aircraft      65—66
Materials for pectoral fins      327 343
Materials for RoboFly      471 473—475
Materials for RoboTuna      302
Materials for scorpion robot      446
Materials for snake robots      276 283
Materials, piezoelectric      154 189 190—191 486
Materials, strength of      25
McKibben actuators      412 414
Measurement and muscle      141—143 145—146
Measurement and oculomotor system      84—86 91—92
Measurement of performance      555 566—568
mechatronics      421—426
Memory      517
MEMS      see "Microelectromechanical systems" "PolyMEMS
Mesoscale quadruped      192
Mesoscale quadruped, control      188—189 190
Mesoscale quadruped, design      189 191—196
Mesoscale quadruped, energy      188 190—191 192 197—201
Mesoscale quadruped, foot trajectory      192 202
Mesoscale quadruped, performance      196—197 201
Mesoscale quadruped, size      191
Mesoscale quadruped, surface types      188 190
Metachronal waves      395
Metal oxide semiconductors (MOS) for visual sensor      91
Metal oxide semiconductors (MOS) in oculomotor system      80
Metals, for actuators      183
Methanol      106—107
Microelectromechanical systems (MEMS), actuators      x 173—183
Microelectromechanical systems (MEMS), sensors      251 256—257 414—415
Micromachining      15—17 26—27
Mines      see "Land mines"
Mirrors      88—89
Missions, suitability for      401—402
Model(s) of work      359—361
Model(s), cricket sound      534—538
Model(s), hexapod coordination      363—367 373—375
Model(s), homing      519 524—525 526 527
Model(s), locomotion      355—357
Model(s), olfaction      101—104
Model(s), parametric legged      426—438
Model(s), Raibert      380n3
Model(s), tuna drag      298 299
Modularity      see also "Biomechanical primitives"
Modularity in lobster robot      256—257
Modularity in walking system      384
Modulation and lamprey robot      294—295
Modulation, parametric      246 256
Modulation, taxic      255
Moisture      184
Moment and flow sensors      24—25 26
Moment and leg joints      130
Moment and pectoral fins      337—338
Motion detectors      34 45 581 see "Local
Motion frequency      322—323
Motion(s)      see also "Eye movements" "Limb
Motion(s) and frequency      189 190 191 195 201
Motion(s) of cockroaches      352—353
Motion(s) of pectoral fins      325—326 330—335
Motion(s), aileron      492
Motion(s), closed-path      192
Motion(s), detection of      34—42 45 581 see
Motion(s), elliptical      192—193
Motion(s), feathering      326 327 330 337
Motion(s), horizontal      34 600—604
Motion(s), rectilinear      275 282
Motion(s), retinal image      594—595
Motion(s), rotational vs. linear      ix
Motion(s), sidewinding      274 277—282
Motion(s), turning      189 197 398
Motion(s), undulation      245 264 274 275 282
Motor control      227—229 233—236 see
Motor output      459—466
Motor primitives, circuits      227 233
Motor primitives, controllers      231—236
Motor primitives, corrections      227 229—230
Motor primitives, degrees of freedom      226 230
Motor primitives, energy      228 236
Motor primitives, obstacle avoidance      227 229—231 236
Motor primitives, oscillations      229 231 241
Motor primitives, patterns      231 235
Motor primitives, phase-locking      233—234
Motor primitives, rhythmicity      226 231 233
Motor primitives, sequence      231
Motor primitives, target tracking      229 236
Motor primitives, vibrations      230
Motor skills      230—231
Motor synergies      243—244 246—248
Motor units      7—8
Muscle exhaust, reuse      267
Muscle fibers      452—453
Muscle(s)      138—152 see "Force and "Polymeric
Muscle(s) and joint stiffness      176
Muscle(s) and transmission      146—148 173
Muscle(s) and wings      453—454 457
Muscle(s) in motor units      7—8
Muscle(s) in systems      147—148
Muscle(s) of Entomopter      485—488 492 493
Muscle(s) of nitinol SMA      119—126 see
Muscle(s), $CA^{++}$ in      457
Muscle(s), antagonistic pairs      x 176
Muscle(s), chemical, reciprocating (RCM)      485—488 492 493—494 496
Muscle(s), chemically fueled      267 482 483—484
Muscle(s), damping      140—141 145 151
Muscle(s), efficiency      151—152
Muscle(s), elasticity      150—151
Muscle(s), energy      141 152
Muscle(s), energy, reuse      267 484 496 499
Muscle(s), finite element analysis      177
Muscle(s), force and stroke      143 145 147
Muscle(s), force generation      144
Muscle(s), force vs. length      150 161 181—182
Muscle(s), form      152
Muscle(s), impedance      143—145 147—148 161
Muscle(s), inertia      146 148
Muscle(s), insect contraction      492
Muscle(s), measurement      141—143 145—146
Muscle(s), mimicry      ix—x 8
Muscle(s), performance range      148—152
Muscle(s), power      139 142(table) 148—150 457 463
Muscle(s), response      145
Muscle(s), steering      457 466 586
Muscle(s), tension vs. length      410
Muscle(s), time-variance      145
Muscle(s), unit cells      175—176
Muscle(s), viscoelasticity      144
Muscle(s), work      146 147 149—150
Natural selection      see "Genetic algorithm"
Navigation      see also "Autonomy" "Controllers"
Navigation and visual sensors      87
Navigation by insects      519—520 593—596
Navigation, along corridors      596—598
Navigation, bat-type      484
Navigation, landmark      527—530
Networks of links      80—82
Networks, body simulation      395
Networks, neural      409 451—452 535—538 549
Networks, neural, Walknet      266 388—394
Neural engineering      5—10
Neural heterarchy      223—231 see
Neural networks      409 451—452 535—538 549
Neuroethology      4
Neurogenic flight      453—457 see
Neurons      see also "Biomechanical primitives"
Neurons and homing      524—530
Neurons and insect walking      451—452
Neurons of animals      6
Neurons of fruit fly      585
Neurons, chemoreceptor      559
Neurons, command      241
Neurons, homeostasis      4
Neurons, motion-detecting      34
Neurons, olfactory      100
Neurons, optic ganglia      33—34
Neurons, presynaptic inhibition      247
Neurons, recording      413
Neurons, sensory receptor      6
Neurotechnology      ix—xii
Nitinol and displacement      123—124 126 128
Nitinol and motor control      244
Nitinol and posture      127—133
Nitinol and power      123 126 128 130—131 133 134 174
Nitinol and temperature      123 126
Nitinol in lamprey robots      290
Nitinol, characteristics      118—119
Nitinol, muscles of      119—126
Nitinol, muscles of, activation time      125—126
Nitinol, muscles of, actuation      256—257
Nitinol, muscles of, contraction/retraction      126 128 129 132 150
Nitinol, muscles of, shape memory      244
Noise in olfactory system      109
Noise in visual sensors      88 93
Nonlinear systems      228
Nose device      104—111
Notocord      242
NUMEM process      15—17 26—27
Obstacle avoidance and insect robots      403 444
Obstacle avoidance and insects, flying      578—579 590 595
Obstacle avoidance and insects, walking      393—394 396
Obstacle avoidance and motor primitives      227 229—231 236
Obstacle avoidance by Entomopter      484 485 495—499 503
Obstacle avoidance by lobsters      250
octane      106—107
Oculomotor systems and background      85
Oculomotor systems, control system      78—79 84
Oculomotor systems, corrective action      79
Oculomotor systems, information coding      79—82 93
Oculomotor systems, light deflection      77—78 88—89
Oculomotor systems, measurements      84—86 91—92
Oculomotor systems, prism      77—78
Oculomotor systems, saccades      82—83 84 85—86
Oculomotor systems, saccades, in fruit fly      576 582
Oculomotor systems, smooth pursuit      79—82 84 86
Oculomotor systems, vibration-based sensor      86—93
Odor tracking      515 553 588—589 590 see
Odor-gated rheotaxis (OGR)      553—554 558 564
Odorants      97—100 112
Olfaction and vision      588—589
Olfaction in fruit fly      588—589 590
Olfaction in vertebrates      97—101
Olfaction, model      101—104
Olfaction, nose device      104—111
Ommatidia      see "Photoreception"
Open-channel package      27
Operating duration      201
Optic expansion      581—583 585 599
Optic ganglia      33—34
Optic-flow patterns      43—48 49—50 50—51
Opto-kinetic reflex (OKR)      74
Optomotor control and contrast      63—65 85—86
Optomotor control, equilibrium      583—585
Optomotor control, experiments      42—48 50—52
Optomotor control, hardware implementation      48—50
Optomotor control, simulation      391
Optomotor reflexes      543—544 584—585
Optomotor response in cricket robot      543—548 550
Optomotor response in crickets      534
Optomotor response in fruit fly      586—587
Optomotor response, defined      35
Optomotor stimulation      453
Orientation for underwater robots      243
Orientation of fruit fly      586—588
Orientation, toward moving objects      35
Oscillations and dolphin robot      313
Oscillations and hawkmoth flight      459
Oscillations and motor primitives      229 231 241
Oscillations and neuromorphic sensors      250
Oscillations and pattern generators      358
Oscillations and RoboTuna tail      301 304
Oscillations and visual sensors      86—93
Oscillations and walking      397—398
Oscillations in scorpion robot      433
Oscillators and RHex      354—355 359—361 366
Oscillators in scorpion robot      441—443
Oscillators, coupled      366 368—371 373 451
Oscillators, first and second order      360
Oscillators, motor control      233 235—236 241 247
Oscillators, motor control, of gait      266 354—355 451
Oscillators, phase coordinates      362
Oscillators, types      241
Oscillators, uses      233
Oxygen plasma etching      180
Packaging and tuna model      298
Packaging for flow sensors      27
Packaging for polymeric actuators      184
Packaging, open-channel      27
Parallel configuration      193—194 245—249
Parametric model      426—438
Parametric modulation      246 256
Patch field, distal      562 564
Pattern generators and oscillation      358
Pattern generators for steps      387
Pattern generators of lamprey robot      359
Pattern-generating circuit      245—249
1 2 3 4 5 6 7
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå