Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Ayers J. — Neurotechnology for biomimetic robots
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Neurotechnology for biomimetic robots
Àâòîð: Ayers J.
Àííîòàöèÿ: The goal of neurotechnology is to confer the performance advantages of animal systems on robotic machines. Biomimetic robots differ from traditional robots in that they are agile, relatively cheap, and able to deal with real-world environments. The engineering of these robots requires a thorough understanding of the biological systems on which they are based, at both the biomechanical and physiological levels.
This book provides an in-depth overview of the field. The areas covered include myomorphic actuators, which mimic muscle action; neuromorphic sensors, which, like animal sensors, represent sensory modalities such as light, pressure, and motion in a labeled-line code; biomimetic controllers, based on the relatively simple control systems of invertebrate animals; and the autonomous behaviors that are based on an animal’s selection of behaviors from a species-specific behavioral "library." The ultimate goal is to develop a truly autonomous robot, one able to navigate and interact with its environment solely on the basis of sensory feedback without prompting from a human operator.
ßçûê:
Ðóáðèêà: Òåõíîëîãèÿ /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2002
Êîëè÷åñòâî ñòðàíèö: 636
Äîáàâëåíà â êàòàëîã: 16.10.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Locomotion see also "Climbing" "Flight" "Insect-like "Mesoscale "Muscle"
Locomotion and cockroach robot 355—357
Locomotion and curves 391 396—397
Locomotion and plume tracking 562—563
Locomotion and water currents 249
Locomotion in insects 451—456
Locomotion in nature 263
Locomotion of snakes 273—275
Locomotion vs. flight 451—456
Locomotion, actuators 243—245
Locomotion, bipedal 355—357 364—368 371—375 377—379
Locomotion, controllers 235—236 355—357
Locomotion, diagonal 249
Locomotion, efficiency 188—189 190 192
Locomotion, lateral 443
Locomotion, mathematical models 355—357
Locomotion, multimodic see "Entomopter"
Locomotion, running 371
Locomotion, swing-phase 371 379 385—387
Locomotion, undulatory 245 264
Locomotion, walking 372 398
Locusts 440 456 463
Logic pins 256—257
Low-pass filtering 37 41 50
Lubricants 503
Lycra 291
Machining see "NUMEM process"
Magnetic fields 459 513
Magnetoresistive sensor 62
Maneuverability and pectoral fins 325—335
Maneuverability of RoboTuna 298 305—306
Maneuverability vs. displacement 298
Manipulator, for underwater robot 333—335
Maps 80—82
MARS 499—507
MARS (mesoscaled aerial robots) see "Entomopter"
Martensites 118—119
Mass and inertia 429
Mass, center of 378—379 407
materials see also "Specific materials"
Materials and flow sensors 25—26
Materials for bass robot 329
Materials for dolphin robots 313 318—320
Materials for Entomopter 486 492 494
Materials for lamprey robots 288—291
Materials for legged robot 404—405 412
Materials for miniature aircraft 65—66
Materials for pectoral fins 327 343
Materials for RoboFly 471 473—475
Materials for RoboTuna 302
Materials for scorpion robot 446
Materials for snake robots 276 283
Materials, piezoelectric 154 189 190—191 486
Materials, strength of 25
McKibben actuators 412 414
Measurement and muscle 141—143 145—146
Measurement and oculomotor system 84—86 91—92
Measurement of performance 555 566—568
mechatronics 421—426
Memory 517
MEMS see "Microelectromechanical systems" "PolyMEMS
Mesoscale quadruped 192
Mesoscale quadruped, control 188—189 190
Mesoscale quadruped, design 189 191—196
Mesoscale quadruped, energy 188 190—191 192 197—201
Mesoscale quadruped, foot trajectory 192 202
Mesoscale quadruped, performance 196—197 201
Mesoscale quadruped, size 191
Mesoscale quadruped, surface types 188 190
Metachronal waves 395
Metal oxide semiconductors (MOS) for visual sensor 91
Metal oxide semiconductors (MOS) in oculomotor system 80
Metals, for actuators 183
Methanol 106—107
Microelectromechanical systems (MEMS), actuators x 173—183
Microelectromechanical systems (MEMS), sensors 251 256—257 414—415
Micromachining 15—17 26—27
Mines see "Land mines"
Mirrors 88—89
Missions, suitability for 401—402
Model(s) of work 359—361
Model(s), cricket sound 534—538
Model(s), hexapod coordination 363—367 373—375
Model(s), homing 519 524—525 526 527
Model(s), locomotion 355—357
Model(s), olfaction 101—104
Model(s), parametric legged 426—438
Model(s), Raibert 380n3
Model(s), tuna drag 298 299
Modularity see also "Biomechanical primitives"
Modularity in lobster robot 256—257
Modularity in walking system 384
Modulation and lamprey robot 294—295
Modulation, parametric 246 256
Modulation, taxic 255
Moisture 184
Moment and flow sensors 24—25 26
Moment and leg joints 130
Moment and pectoral fins 337—338
Motion detectors 34 45 581 see "Local
Motion frequency 322—323
Motion(s) see also "Eye movements" "Limb
Motion(s) and frequency 189 190 191 195 201
Motion(s) of cockroaches 352—353
Motion(s) of pectoral fins 325—326 330—335
Motion(s), aileron 492
Motion(s), closed-path 192
Motion(s), detection of 34—42 45 581 see
Motion(s), elliptical 192—193
Motion(s), feathering 326 327 330 337
Motion(s), horizontal 34 600—604
Motion(s), rectilinear 275 282
Motion(s), retinal image 594—595
Motion(s), rotational vs. linear ix
Motion(s), sidewinding 274 277—282
Motion(s), turning 189 197 398
Motion(s), undulation 245 264 274 275 282
Motor control 227—229 233—236 see
Motor output 459—466
Motor primitives, circuits 227 233
Motor primitives, controllers 231—236
Motor primitives, corrections 227 229—230
Motor primitives, degrees of freedom 226 230
Motor primitives, energy 228 236
Motor primitives, obstacle avoidance 227 229—231 236
Motor primitives, oscillations 229 231 241
Motor primitives, patterns 231 235
Motor primitives, phase-locking 233—234
Motor primitives, rhythmicity 226 231 233
Motor primitives, sequence 231
Motor primitives, target tracking 229 236
Motor primitives, vibrations 230
Motor skills 230—231
Motor synergies 243—244 246—248
Motor units 7—8
Muscle exhaust, reuse 267
Muscle fibers 452—453
Muscle(s) 138—152 see "Force and "Polymeric
Muscle(s) and joint stiffness 176
Muscle(s) and transmission 146—148 173
Muscle(s) and wings 453—454 457
Muscle(s) in motor units 7—8
Muscle(s) in systems 147—148
Muscle(s) of Entomopter 485—488 492 493
Muscle(s) of nitinol SMA 119—126 see
Muscle(s), in 457
Muscle(s), antagonistic pairs x 176
Muscle(s), chemical, reciprocating (RCM) 485—488 492 493—494 496
Muscle(s), chemically fueled 267 482 483—484
Muscle(s), damping 140—141 145 151
Muscle(s), efficiency 151—152
Muscle(s), elasticity 150—151
Muscle(s), energy 141 152
Muscle(s), energy, reuse 267 484 496 499
Muscle(s), finite element analysis 177
Muscle(s), force and stroke 143 145 147
Muscle(s), force generation 144
Muscle(s), force vs. length 150 161 181—182
Muscle(s), form 152
Muscle(s), impedance 143—145 147—148 161
Muscle(s), inertia 146 148
Muscle(s), insect contraction 492
Muscle(s), measurement 141—143 145—146
Muscle(s), mimicry ix—x 8
Muscle(s), performance range 148—152
Muscle(s), power 139 142(table) 148—150 457 463
Muscle(s), response 145
Muscle(s), steering 457 466 586
Muscle(s), tension vs. length 410
Muscle(s), time-variance 145
Muscle(s), unit cells 175—176
Muscle(s), viscoelasticity 144
Muscle(s), work 146 147 149—150
Natural selection see "Genetic algorithm"
Navigation see also "Autonomy" "Controllers"
Navigation and visual sensors 87
Navigation by insects 519—520 593—596
Navigation, along corridors 596—598
Navigation, bat-type 484
Navigation, landmark 527—530
Networks of links 80—82
Networks, body simulation 395
Networks, neural 409 451—452 535—538 549
Networks, neural, Walknet 266 388—394
Neural engineering 5—10
Neural heterarchy 223—231 see
Neural networks 409 451—452 535—538 549
Neuroethology 4
Neurogenic flight 453—457 see
Neurons see also "Biomechanical primitives"
Neurons and homing 524—530
Neurons and insect walking 451—452
Neurons of animals 6
Neurons of fruit fly 585
Neurons, chemoreceptor 559
Neurons, command 241
Neurons, homeostasis 4
Neurons, motion-detecting 34
Neurons, olfactory 100
Neurons, optic ganglia 33—34
Neurons, presynaptic inhibition 247
Neurons, recording 413
Neurons, sensory receptor 6
Neurotechnology ix—xii
Nitinol and displacement 123—124 126 128
Nitinol and motor control 244
Nitinol and posture 127—133
Nitinol and power 123 126 128 130—131 133 134 174
Nitinol and temperature 123 126
Nitinol in lamprey robots 290
Nitinol, characteristics 118—119
Nitinol, muscles of 119—126
Nitinol, muscles of, activation time 125—126
Nitinol, muscles of, actuation 256—257
Nitinol, muscles of, contraction/retraction 126 128 129 132 150
Nitinol, muscles of, shape memory 244
Noise in olfactory system 109
Noise in visual sensors 88 93
Nonlinear systems 228
Nose device 104—111
Notocord 242
NUMEM process 15—17 26—27
Obstacle avoidance and insect robots 403 444
Obstacle avoidance and insects, flying 578—579 590 595
Obstacle avoidance and insects, walking 393—394 396
Obstacle avoidance and motor primitives 227 229—231 236
Obstacle avoidance by Entomopter 484 485 495—499 503
Obstacle avoidance by lobsters 250
octane 106—107
Oculomotor systems and background 85
Oculomotor systems, control system 78—79 84
Oculomotor systems, corrective action 79
Oculomotor systems, information coding 79—82 93
Oculomotor systems, light deflection 77—78 88—89
Oculomotor systems, measurements 84—86 91—92
Oculomotor systems, prism 77—78
Oculomotor systems, saccades 82—83 84 85—86
Oculomotor systems, saccades, in fruit fly 576 582
Oculomotor systems, smooth pursuit 79—82 84 86
Oculomotor systems, vibration-based sensor 86—93
Odor tracking 515 553 588—589 590 see
Odor-gated rheotaxis (OGR) 553—554 558 564
Odorants 97—100 112
Olfaction and vision 588—589
Olfaction in fruit fly 588—589 590
Olfaction in vertebrates 97—101
Olfaction, model 101—104
Olfaction, nose device 104—111
Ommatidia see "Photoreception"
Open-channel package 27
Operating duration 201
Optic expansion 581—583 585 599
Optic ganglia 33—34
Optic-flow patterns 43—48 49—50 50—51
Opto-kinetic reflex (OKR) 74
Optomotor control and contrast 63—65 85—86
Optomotor control, equilibrium 583—585
Optomotor control, experiments 42—48 50—52
Optomotor control, hardware implementation 48—50
Optomotor control, simulation 391
Optomotor reflexes 543—544 584—585
Optomotor response in cricket robot 543—548 550
Optomotor response in crickets 534
Optomotor response in fruit fly 586—587
Optomotor response, defined 35
Optomotor stimulation 453
Orientation for underwater robots 243
Orientation of fruit fly 586—588
Orientation, toward moving objects 35
Oscillations and dolphin robot 313
Oscillations and hawkmoth flight 459
Oscillations and motor primitives 229 231 241
Oscillations and neuromorphic sensors 250
Oscillations and pattern generators 358
Oscillations and RoboTuna tail 301 304
Oscillations and visual sensors 86—93
Oscillations and walking 397—398
Oscillations in scorpion robot 433
Oscillators and RHex 354—355 359—361 366
Oscillators in scorpion robot 441—443
Oscillators, coupled 366 368—371 373 451
Oscillators, first and second order 360
Oscillators, motor control 233 235—236 241 247
Oscillators, motor control, of gait 266 354—355 451
Oscillators, phase coordinates 362
Oscillators, types 241
Oscillators, uses 233
Oxygen plasma etching 180
Packaging and tuna model 298
Packaging for flow sensors 27
Packaging for polymeric actuators 184
Packaging, open-channel 27
Parallel configuration 193—194 245—249
Parametric model 426—438
Parametric modulation 246 256
Patch field, distal 562 564
Pattern generators and oscillation 358
Pattern generators for steps 387
Pattern generators of lamprey robot 359
Pattern-generating circuit 245—249
Ðåêëàìà