Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Ayers J. — Neurotechnology for biomimetic robots
Ayers J. — Neurotechnology for biomimetic robots



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Neurotechnology for biomimetic robots

Àâòîð: Ayers J.

Àííîòàöèÿ:

The goal of neurotechnology is to confer the performance advantages of animal systems on robotic machines. Biomimetic robots differ from traditional robots in that they are agile, relatively cheap, and able to deal with real-world environments. The engineering of these robots requires a thorough understanding of the biological systems on which they are based, at both the biomechanical and physiological levels.
This book provides an in-depth overview of the field. The areas covered include myomorphic actuators, which mimic muscle action; neuromorphic sensors, which, like animal sensors, represent sensory modalities such as light, pressure, and motion in a labeled-line code; biomimetic controllers, based on the relatively simple control systems of invertebrate animals; and the autonomous behaviors that are based on an animal’s selection of behaviors from a species-specific behavioral "library." The ultimate goal is to develop a truly autonomous robot, one able to navigate and interact with its environment solely on the basis of sensory feedback without prompting from a human operator.


ßçûê: en

Ðóáðèêà: Òåõíîëîãèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2002

Êîëè÷åñòâî ñòðàíèö: 636

Äîáàâëåíà â êàòàëîã: 16.10.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Abstraction      555 566
Acetone      106—107
Acoustic signals      484—485 496—499 515 see
Acrylic      157 158—159
Active cord mechanism      277
Active flow control      484 487 497
actuators      see also "Biomechanical primitives" "Muscle" "Pneumatic
Actuators and impedance      144 147
Actuators and load      146
Actuators for lamprey robot      291
Actuators for legged robots      402
Actuators for snake robots      283
Actuators of dielectric elastomer      152—158 165 166 168
Actuators, bow-tie      155 156 157 164
Actuators, choice of      402
Actuators, feedback loops      7—8
Actuators, future trends      413
Actuators, linear      156
Actuators, McKibben      412 414
Actuators, MEMS      x 173—183
Actuators, minimizing      189
Actuators, motor units      7—8
Actuators, myomorphic      242 243—245
Actuators, piezoelectric      190—191 197—201 475—478 486
Actuators, rolled      156 157 167—168
Actuators, servo      173
Actuators, trench-type      155 167
ADAMS simulation      429
Adaptivity of unit cell design      178—179
Adaptivity to light      39
Adaptivity to water currents      134 249—250
Adaptivity, rules for      420
Aerodynamics, of insect flight      470—475 488—490
Aileron motion      492
Aimed-trajectory formation      227 236
Air flow      28 490
Air stream      455
Aircraft      see also "Entomopter"
Aircraft, landing      503 606—608
Aircraft, stabilization of      65—70
Aircraft, unmanned      482—484
Aircraft, visually controlled      65—70
Aliasing, perceptional      423—424
Alloys      see "Nitinol" "Shape
Aluminum in actuators      180 183
Aluminum in scorpion robot      446
Aluminum, dielectric coating      180
Ambulation      245 265 see "Walking"
Amphibians      413 see
Amplitude in snake gait      274—275
Amplitude of steps      396—397
Amyl acetate      106—107
Analog homing      518 520—524 526
Analog neuron network      451—452
Analog sensors      251 256—257
Analysis, finite element (FEA)      177
Anemometers      23
Angles and phonotaxis      540
Angles in swimming      343 345
Angles of attack      492
Angles of descent      600 601
Angles of leg liftoff      365
Angles, approach      577
Angles, caudal fin      321
Angles, feathering      338
Angles, flapping      338
Angles, heading      305—306 540 542 558
Angles, joints and feedback      391
Angles, joints and posture      129
Angles, joints, swing and stance role      392 408 410 432
Angles, lead-lag      338
Angles, oscillatory pitch      343
Angles, pectoral fin      327 338
Angles, phase      331—332
Angles, pitch and roll      343—345
Angles, sinusoidal      338
Angles, touchdown      365—367 371
Angular resolution      33
Angular velocity of joint movement      391 392 433—436 437
Angular velocity of visual image      44—45 58—65 596 600—606
Antennae      16—17 250
Ants      528
Applications, indoor use      483 490 495 576
Applications, land mine detection      106 108 111
Applications, Mars exploration      499—507
Applications, mine detection      13—14 106 108 111
Applications, pipe inspection      168 268
Applications, pollutant tracking      268 564
Applications, reconnaissance      see "Entomopter"
Applications, search and rescue      268 271—273
Applications, unmanned aerial vehicles      482—484
Asymmetry, in vision robot      49 50—51
Autonomy and pattern generators      383
Autonomy of Entomopter      495—499 503—504
Autonomy of legged robots      413—415
Autonomy, long term      6
Autonomy, reactive      254 383
Autonomy, supervised      256 293—295 391—392
Average landmark vector      517 519—527 528 531
Averaging, prespike signal      581
Band-pass filter      391
Bandwidth of actuators      173
Bandwidth of visual sensor      91—92
Bass robot      see also "Pectoral fins"
Bass robot, control      330—333
Bass robot, depth      340 344
Bass robot, design      329—330 333 340—343
Bass robot, swimming      343—345
Bats      484
Beam for lamprey robot      292
Beam in contact/bending sensor      18—20 22—23
Beam theory      18
Beam, ultrasonic      482 496—499
Bearings, in quadruped      189—190
Bees in tunnels      593—595
Bees, centering reflex      584—585 593—595
Bees, landings      598—605
Bees, olfaction      588—589
Bees, speed control      595—598
Bees, vision      584—589
behavior      see also "Autonomy" "Obstacle
Behavior and sound      534 538—543
Behavior libraries for lamprey robot      287 289
Behavior libraries for lobster robot      251 252
Behavior, adaptive      178—179 420
Behavior, analysis      251—254
Behavior, choice      254
Behavior, finite-state analysis      251—254
Behavior, fixation      586
Behavior, food search      573 588—589 590
Behavior, goal-directed      4
Behavior, homing      495 517 see
Behavior, hybrid acts      248—249
Behavior, intensity increase      256
Behavior, odor tracking      515 553—554 see
Behavior, perceptive      513—515
Behavior, plume-tracking      562—564
Behavior, quantization      251 253
Behavior, reflex      226—227 228—230 232
Behavior, selectivity      556
Behavior, self-preservation      505
Behavior, synthetic      see "Biomechanical primitives"
Bending      14—22 410 see
Bias, directional      547
BICSAAR robots      see "Lobster robots"
Biomechanical primitives in controller      231—236
Biomechanical primitives, defined      226
Biomechanical primitives, force-field      9 226 227—229
Biomechanical primitives, future research      236
Biomechanical primitives, motor learning      227—231 231—236
Biomechanical primitives, spinal      225—227
Biomechanical primitives, study approaches      224—225
Biomechanical primitives, vestibular      230
Biomimetic robotics vs. nature      4 351
Biomimetic robotics, purpose      553—555 565—568 609
Biomimetic robotics, research needs      4—5
Biomorphic plant      242
Bipeds      355—357 364—368 371—375 377—379
Black bass      325—326 see
Blowflies      267—268 476 586
Body geometry      395—396
Body simulation      395
Brachiating robots      359
Brain of fly      33—34
Brain, force-field primitives      230
Brain, motion detectors      34
Brain, sensory interpretation      6 33—34
Braking by muscle      139—141 145
Braking in RoboTuna      299
Braking, car example      368
Breathing      168 169
Bridge drives      425
bridges      410
Burst generators      231
cameras      75 87 93 606
Cantilever beams in contact/bending sensor      18—20 22—23
Cantilever beams in flow sensors      23 24—25
Cartesian coordinates      266
Cats      410
Causality, in underwater robot      255
Cells, large monopolar (LMCs)      33—34
Cells, unit, of muscle      175—179
Center-surround responses      7
Centering reflex      584—585 593—595
Central nervous system      3—4 223—231 see "Spinal
Central pattern generators (CPGs) and scorpion robot      440—441
Central pattern generators (CPGs) for cockroach robot      357—358 362—363 371—375
Central pattern generators (CPGs) for lobster robot      9
Central pattern generators (CPGs) in natural brain      4
Ceramics, piezoelectric      189 190—191 197—201 486
Charge trapping      180 182 183
Chelae      252
Chemo-orientation      555 556—564 567 574
Chemoreceptors      559 561
Choice      233—236 254
circuits      see also "VLSI"
Circuits in legged robot      410
Circuits, elastodynamic quadruped      199—200
Circuits, fruit fly saccades      583
Circuits, homing      518 520—522
Circuits, integrate-and-fire      91
Circuits, lamprey software      291
Circuits, manufacturing      179
Circuits, motor primitives      227 233
Circuits, neural controller      245—249
Circuits, optomoter response      543
Circuits, pattern-generating      245—249
Circuits, phonotaxis      539—541 543 549—550
Circuits, polymeric muscle      152 169
Circuits, Reichardt motion      39 41
Circuits, sensory integration      410
Clever Hans      513
Climbing, legged robot      403 406 408 410
Climbing, snake robot      275
Closed-path motion      192
Cockroach robot      266—267 359—362 366 368—371 379n1
Cockroaches and force-time response      160—161
Cockroaches, climbing      410
Cockroaches, exoskeleton      412
Cockroaches, feedback in      410
Cockroaches, leg analysis      404 406
Cockroaches, leg stiffness/damping      140 151
Cockroaches, running      352—353
Cockroaches, stability      265—266
Cockroaches, walking      8
Coding for underwater robot      245 248 250 256—257
Coding mechanisms      5
Coding, genetic algorithm      209
Coding, oculomotor system      79—82
Coding, population      80
Coding, string-based      209
Coding, supervision commands      256
Collision angles      577
Colors      33
Command stack      254
Commands for walking      372 398
Commands, coding      256
Commands, superposition of      248—249
Communication and Mars exploration      506—507
Communication between crickets      515 533—534
Communication in scorpion robot      424
compass      303
Concertina progression      274—275
Configuration, parallel vs. serial      193—194
Contact      243 see "Obstacle
Contact/bending sensors in legged robot      410
Contact/bending sensors, cantilever beam      18—20
Contact/bending sensors, categories      14
Contact/bending sensors, contact- vs. flow-caused      17
Contact/bending sensors, design constraints      15
Contact/bending sensors, micromachining      15—16 16
Contact/bending sensors, neuromorphic      249—250
Contact/bending sensors, NUMEM      14—15
Contact/bending sensors, overbending      20
Contact/bending sensors, residual stress      22—23 29
Contact/bending sensors, sensitivity      20
Contact/bending sensors, stopper sensing      19—20 22
Contact/bending sensors, switches      14—15 17—19 20
Contact/bending sensors, testing      20—23
Contraction and flight      453 457 464—465
Contraction and power levels      128
Contraction of wasp muscle      492
Contrast and distance      63—65
Contrast and eye movements      63—65 67—70 85—86
Contrast and optomotor system      63—65 85—86 586
Contrast in vibration-based sensor      87
Control      see also "Coordination" "Feedback" "Feed-forward "Flow "Optomotor
Control and actuator choice      402
Control and joints      388
Control and silicon      188—189
Control of Bass II      330—333
Control of Entomopter      487
Control of landings      606—608
Control of limbs      388
Control of motor reflexes      227—229 233—236
Control of quadruped      188—189 190 197 201 202
Control of RoboTuna      303
Control of speed      392 595—597 598
Control of yaw      335—336
Control, (de)centralized      359
Control, architectures      xi 248—249
Control, closed-loop      266 606
Control, decision system      233—236
Control, directional      485—486
Control, dive-plane      303
Control, feed-forward      357—358 359 362—363 371—375
Control, hierarchical      384 409 424—425
Control, modular      384
Control, open-loop      266 303 333 357—358 see
Control, rendezvous      330—332
Control, wireless      202
Controllers and adjustments      9
Controllers and memory      9
Controllers for cockroach robot      354 355—357
Controllers for lamprey robot      287 291 359
Controllers for legged (insect-like) robot      402 407 409
Controllers for snake robot      277 278—281
Controllers for underwater robots      245—257
Controllers from motor primitives      231—236
Controllers of gait      266—267 388—394
1 2 3 4 5 6 7
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå