Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Ayers J. — Neurotechnology for biomimetic robots
Ayers J. — Neurotechnology for biomimetic robots



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Neurotechnology for biomimetic robots

Àâòîð: Ayers J.

Àííîòàöèÿ:

The goal of neurotechnology is to confer the performance advantages of animal systems on robotic machines. Biomimetic robots differ from traditional robots in that they are agile, relatively cheap, and able to deal with real-world environments. The engineering of these robots requires a thorough understanding of the biological systems on which they are based, at both the biomechanical and physiological levels.
This book provides an in-depth overview of the field. The areas covered include myomorphic actuators, which mimic muscle action; neuromorphic sensors, which, like animal sensors, represent sensory modalities such as light, pressure, and motion in a labeled-line code; biomimetic controllers, based on the relatively simple control systems of invertebrate animals; and the autonomous behaviors that are based on an animal’s selection of behaviors from a species-specific behavioral "library." The ultimate goal is to develop a truly autonomous robot, one able to navigate and interact with its environment solely on the basis of sensory feedback without prompting from a human operator.


ßçûê: en

Ðóáðèêà: Òåõíîëîãèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2002

Êîëè÷åñòâî ñòðàíèö: 636

Äîáàâëåíà â êàòàëîã: 16.10.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Patterns      see also "Homing"
Patterns and crustaceans      245
Patterns and direction, in lobsters      246—248
Patterns and motor control      236 241 243—245
Patterns and motor primitives      231 235
Patterns of sound      549
Patterns, libraries of      251 252
Patterns, olfactory      108—109 558
Patterns, timing      549
Patterns, visual, and flying insects      517 576—578 584 593—594
Patterns, visual, optic flow      43—48 49—50 50—51
Payloads and insect-like robots      266 404 408
Payloads, minimal      401
Pectoral fins      336 see
Pectoral fins, hydrodynamics      327—328 337—340
Pectoral fins, motions      325—326 330—335
Pectoral fins, motor-driven      327—329
Pendulum, hanging      359
Pendulum, inverted      355—357 380n3
Perception in behavior      513—515
Perception of dark line      87 91
Perception, aliasing      423—424
Phase angle      331—332
Phase change      453—454
Phase difference and cockroach robot      370 372—373
Phase difference and feedback      372—373
Phase difference and pectoral fins      337—338 341
Phase lag      192 430—431 432
Phase regulation and energy      359—361 370—371
Phase regulation in cockroach robot      353—355 359—363 366 370—371
Phase regulation, feedback-based      361—365
Phase relationships      361—362
Phase-locking      233—234
Phonotaxis      533—534 see "Cricket
Photocurrent      87 91—92
photolithography      180
Photoreception in flies      32—33 42—43 573—574
Photoreception, Reichardt detector      36—38
Photoreceptors and angular sensitivity      58—59
Photoreceptors and contrast      87
Photoreceptors and moving images      74
Photoreceptors, ommatidia      33 34
Photoreceptors, output calculation      59—61
Photoreceptors, spacing      75
Piezoelectric actuators and Entomopter      486
Piezoelectric actuators in quadruped robot      8—9 188 190—191 197—201
Piezoelectric actuators in RoboFly      475—478
Piezoelectric ceramics      189 486
Piezoelectric materials      154 189 190—191
Piezoresistors      23
Pipes      27 168 494 see
Pitch and roll in water robots      131—133 248 252 343—345
Pitch and roll, and fins      309
Pitch and roll, and fruit fly      585
Pitch and roll, and hawkmoth      459
Pitch and roll, angles      343—345
Pitch and roll, coding for      257
Pixel arrays      33
Place coding      79—82
Plastic      25—26
Plume tracking      556—564 567
Pneumatic actuators in legged robot      404 405 406 409
Pneumatic actuators vs. servo      173—174
Pneumatic actuators, pneumatic, future type      412
Pneumatics      491
Pogo-stick template      353—354
Poincare section      366
Polarity      245
Pollutant tracking      564
polycarbonate      16
Polyester      180
Polyimide      179—181
PolyMEMS muscle and moisture      184
PolyMEMS muscle, concept      174—175
PolyMEMS muscle, fabrication      179—181
PolyMEMS muscle, reliability      182—184
PolyMEMS muscle, unit cells      175—179 181
Polymeric muscle and voltage      486
Polymeric muscle, applications      163—168
Polymeric muscle, electrostatic MEMS      x 152—156 173
Polymeric muscle, examples      155—156
Polymeric muscle, future      168—169
Polymeric muscle, operation principle      153—154
Polymeric muscle, power      159—160 162
Polymeric muscle, testing      157—163
Polymers and explosives      7
Polymers for snake robots      283
Polymers, dielectric elastomer      see "Dielectric elastomers"
Polymers, electroactive      x 8
Polymers, thickness      178—179 183
polymethylmethacrylate (PMMA)      179
Polytetrafluoroethylene (PTFE)      291
Polyurethane      242
Polyvinyl chloride (PVC)      16
Polyvinylidene fluoride (PVDF)      179
Population coding      80
Position(s)      see also "Limb positions"
Position(s) in force-field primitives      227
Position(s), changes in      368—369
Posture in flight      574
Posture in legged robots      407—408 409
Posture in scorpion robot      428
Posture in stick insect robot      266
Posture in underwater robot      127—133 134 242 248 251 252
Posture, tuning      254
Potential(s) and cockroach robot      360—361 368
Potential(s) and flight      453
Potential(s), generator      6
Potential(s), storage of      492
Power      see also "Energy"
Power and actuators      159 173—174
Power and dolphin robot      315
Power and lamprey robot      292
Power and muscles      139 142(table) 148—150 see "Shape
Power and piezoelectric actuator      190—191
Power and RoboFly      477—478
Power and swimming robot      214
Power for legged robots      402 414
Power for quadruped      190—191 197—201
Power for vision robot      51—53
Power muscles      457 463—465
Power, induced      490
Power, peak vs. average      150
Power, profile      490
Power, self-      188 200—201
Power, thrust ratio      214
Power, volume-specific      190
Power-to-weight ratios      283
PREDATOR      483
Preflexes and RHex      266 372—373 375
Preflexes in cockroach      140—141 353—354
Preflexes, advantages      148 372—373
Prespike signal averaging      581
Pressure and artificial muscle      178
Pressure and cricket sound      534
Primitives      see "Biomechanical primitives"
prisms      77—78
Probabilistic transformation      see "Genetic algorithms"
Profile power      490
Propulsion      see also "Vorticity propulsion"
Propulsion and maneuverability      298
Propulsion in dolphin robot      316—318
Propulsive force      243—244
Protraction      see "Limb positions"
Protractors      247
Pseudoelasticity      118—119
Pull-in voltage      176 181—182
Pulse width modulation (PWM) and lamprey robot      288 291
Pulse width modulation (PWM) and legged robot      409
Pulse width modulation (PWM) and muscle      123—125
Pulses, current      242 243 244
q      473 476
Q-type reinforcement      236
Quadruped      see "Mesoscale quadruped"
Queue-based sequencers      243 254 255
Rats      227
Reaching, offensive      236
Reafference      544
Recognition of patterns      527—528
Recognition of sounds      534 538—539
Reconnaissance      see "Entomopter"
Recovery      183 397
Recruitment and activators      243—244 246
Recruitment of sensors      355—357
Rectilinear motion      275 282
recycling      267 484 496 499
Redundance      408—409
Reflex behavior      226—227 228—230 232
Reflexes in cockroach robot      355
Reflexes in legged robots      422
Reflexes in scorpion robot      440 443—445
Reflexes in underwater robots      255—256
Reflexes, centering      584—585 593—595
Reflexes, collision-avoidance      578—580
Reflexes, coupled oscillator      366 368—371 373
Reflexes, opto-kinetic (OKR)      74
Reflexes, optomotor      543—544 584—585
Reflexes, quasi-static      366 367—371
Reflexes, vestibulo-ocular      74
Reflexes, wiping      227 230 232 234
Reichardt motion      35—42
Reinforcement, of learning      236
Releaser library      293—295
Releasers      x 243 254
Relevance      565
Resilin      492
Resonance and Entomopter      482 492 493 502
Resonance and fruit fly      578
Resonance in flight      457 464 477 482 493
Resonance in quadrupeds      189 195
Responses      see also "Optomotor response"
Responses to current pulses      242 243
Responses to environment input      243
Responses, center-surround      7
Responses, libraries of      251 252
Retinal chips      79—84
Retinal image      74 594—595
Retraction and flow sensors      26
Retraction and muscles      129 132
Retraction of limbs      354 361 372 378
Reverse engineering and lamprey robot      264—265 287
Reverse engineering and lobster robot      252
Reverse engineering of stick insect robot      266
Reynolds number and Entomopter      481 489 502
Reynolds number and flying thorax      471
Reynolds number for pipe flow      28
RF interrogator      503
Rheotaxis      255
Rheotaxis, odor-gated (OGR)      553—554 558 564
RHex as functional biomimesis      352—253
RHex, coordination control      353—355 363—367 371—375
RHex, dynamic reflex      367—375
RHex, preflexes      266 372—373 375
Rhythmicity and motor control      236 241 246
Rhythmicity and motor primitives      226 231 233
Ribs      302
RoboFly and power      477—479
RoboFly, actuators      475—476
RoboFly, aerodynamics      469—475
RoboFly, construction      473—475
RoboFly, design      471
RoboFly, energy      476—477
RoboLobster      see "Lobster robots"
Robots      see also "Biomimetic robots" "Hexapod "Legged "Mesoscale "Underwater
Robots, abstraction level      555 566
Robots, design factors      419—421
Robots, development      401—405 414
Robots, multimodic      see "Entomopter"
Robots, performance measures      555 566—568
Robots, wireless      188—201
RoboTuna, braking      299
RoboTuna, control      303
RoboTuna, design      301—304
RoboTuna, genetic algorithm      210 212 213—220
RoboTuna, housing      298 302
RoboTuna, maneuverability      298 305—306
RoboTuna, propulsion      298—299
RoboTuna, sensors      302—303
RoboTuna, swimming      299 303 304—305
RoboTuna, velocity      301 304—305 306
Rotation and force-field primitives      228
Rotation and fruit fly      584 585 589
Rotation and homing      527
Rotation and quadruped      192 194—195
Rotation in dolphin robot      313
Rotation in scorpion robot      433 437
Rotation of joints      433
Rotation of photosensors      59
Rotation of wings      453 470—471
Rotation vs. linear motion      ix
Rotation, self-      35 49—50 50—52
Running      353 371 395
Rust      189—190
Saccades in fruit fly      576—580 581—583 586 590
Saccades in vision model      82—85
Saccades, description      73—74
Saccades, expansion      582—583 585
SCALE      see "Mesoscale quadruped"
Scaling and force-field primitives      227
Scaling and lobster robot      561—562 564
Scaling and snake robots      281
Scaling, force-      190
Scanning in human vision      75
Scanning, continuous      88
Scanning, oscillatory      86 88 89
Scanning, variable-speed      57—65
Schemata      216—220
Schemata theorem      220
Scorpion robot      420 421 423
Scorpion robot, computational hardware      424—426
Scorpion robot, control      267 424—426 440—443
Scorpion robot, design components      426—427
Scorpion robot, future      446
Scorpion robot, ground contact      428—429
Scorpion robot, joint coordination      436—439
Scorpion robot, motion      429—436
Scorpion robot, posture      428
Scorpion robot, sensors      423—424
Search and rescue      268 271—273
Search engines, genetic algorithms      208—214
Search engines, probabilistic      208—213
Self-excitation      359
Self-healing      183
Self-motion, and optic-flow      47
Self-powering      188 200—201
Self-preservation      505
Self-rotation      35 49—50 50—52
Semiconductors      80 91
Sensorimotor integration      see "Sensory fusion"
sensors      see also "Contact/bending sensors" "Flow
Sensors and feedback      6—7
Sensors for cricket robot      549
Sensors for homing      495
Sensors for Mars flier      505—506
Sensors for RoboTuna      302—303
Sensors for snake robots      282
Sensors for underwater robots      243
Sensors in Entomopter      484—485
Sensors of animals      x
Sensors of scorpion robot      422 423—424
1 2 3 4 5 6 7
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå