Àâòîðèçàöèÿ 
		         
		        
					
 
		          
		        
			          
		        
			        Ïîèñê ïî óêàçàòåëÿì 
		         
		        
			        
					 
		          
		        
			          
			
			         
       		 
			          
                
                    
                        
                     
                  
		
			          
		        
			          
		
            
	     
	    
	    
            
		
                    Ayers J. — Neurotechnology for biomimetic robots 
                  
                
                    
                        
                            
                                
                                    Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå    Íàøëè îïå÷àòêó? 
 
                                
                                    Íàçâàíèå:   Neurotechnology for biomimetic robotsÀâòîð:   Ayers J.  Àííîòàöèÿ:  The goal of neurotechnology is to confer the performance advantages of animal systems on robotic machines. Biomimetic robots differ from traditional robots in that they are agile, relatively cheap, and able to deal with real-world environments. The engineering of these robots requires a thorough understanding of the biological systems on which they are based, at both the biomechanical and physiological levels.
ßçûê:  Ðóáðèêà:  Òåõíîëîãèÿ /Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ:  Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö ed2k:   ed2k stats Ãîä èçäàíèÿ:  2002Êîëè÷åñòâî ñòðàíèö:  636Äîáàâëåíà â êàòàëîã:  16.10.2005Îïåðàöèè:  Ïîëîæèòü íà ïîëêó  |
	 
	Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà  | Ñêîïèðîâàòü ID 
                                 
                             
                        
                     
                 
                                                                
			          
                
                    Ïðåäìåòíûé óêàçàòåëü 
                  
                
                    
                        Patterns see also "Homing" Patterns and crustaceans 245 Patterns and direction, in lobsters 246—248 Patterns and motor control 236 241 243—245 Patterns and motor primitives 231 235 Patterns of sound 549 Patterns, libraries of 251 252 Patterns, olfactory 108—109 558 Patterns, timing 549 Patterns, visual, and flying insects 517 576—578 584 593—594 Patterns, visual, optic flow 43—48 49—50 50—51 Payloads and insect-like robots 266 404 408 Payloads, minimal 401 Pectoral fins 336 see Pectoral fins, hydrodynamics 327—328 337—340 Pectoral fins, motions 325—326 330—335 Pectoral fins, motor-driven 327—329 Pendulum, hanging 359 Pendulum, inverted 355—357 380n3 Perception in behavior 513—515 Perception of dark line 87 91 Perception, aliasing 423—424 Phase angle 331—332 Phase change 453—454 Phase difference and cockroach robot 370 372—373 Phase difference and feedback 372—373 Phase difference and pectoral fins 337—338 341 Phase lag 192 430—431 432 Phase regulation and energy 359—361 370—371 Phase regulation in cockroach robot 353—355 359—363 366 370—371 Phase regulation, feedback-based 361—365 Phase relationships 361—362 Phase-locking 233—234 Phonotaxis 533—534 see "Cricket Photocurrent 87 91—92 photolithography 180 Photoreception in flies 32—33 42—43 573—574 Photoreception, Reichardt detector 36—38 Photoreceptors and angular sensitivity 58—59 Photoreceptors and contrast 87 Photoreceptors and moving images 74 Photoreceptors, ommatidia 33 34 Photoreceptors, output calculation 59—61 Photoreceptors, spacing 75 Piezoelectric actuators and Entomopter 486 Piezoelectric actuators in quadruped robot 8—9 188 190—191 197—201 Piezoelectric actuators in RoboFly 475—478 Piezoelectric ceramics 189 486 Piezoelectric materials 154 189 190—191 Piezoresistors 23 Pipes 27 168 494 see Pitch and roll in water robots 131—133 248 252 343—345 Pitch and roll, and fins 309 Pitch and roll, and fruit fly 585 Pitch and roll, and hawkmoth 459 Pitch and roll, angles 343—345 Pitch and roll, coding for 257 Pixel arrays 33 Place coding 79—82 Plastic 25—26 Plume tracking 556—564 567 Pneumatic actuators in legged robot 404 405 406 409 Pneumatic actuators vs. servo 173—174 Pneumatic actuators, pneumatic, future type 412 Pneumatics 491 Pogo-stick template 353—354 Poincare section 366 Polarity 245 Pollutant tracking 564 polycarbonate 16 Polyester 180 Polyimide 179—181 PolyMEMS muscle and moisture 184 PolyMEMS muscle, concept 174—175 PolyMEMS muscle, fabrication 179—181 PolyMEMS muscle, reliability 182—184 PolyMEMS muscle, unit cells 175—179 181 Polymeric muscle and voltage 486 Polymeric muscle, applications 163—168 Polymeric muscle, electrostatic MEMS x 152—156 173 Polymeric muscle, examples 155—156 Polymeric muscle, future 168—169 Polymeric muscle, operation principle 153—154 Polymeric muscle, power 159—160 162 Polymeric muscle, testing 157—163 Polymers and explosives 7 Polymers for snake robots 283 Polymers, dielectric elastomer see "Dielectric elastomers" Polymers, electroactive x 8 Polymers, thickness 178—179 183 polymethylmethacrylate (PMMA) 179 Polytetrafluoroethylene (PTFE) 291 Polyurethane 242 Polyvinyl chloride (PVC) 16 Polyvinylidene fluoride (PVDF) 179 Population coding 80 Position(s) see also "Limb positions" Position(s) in force-field primitives 227 Position(s), changes in 368—369 Posture in flight 574 Posture in legged robots 407—408 409 Posture in scorpion robot 428 Posture in stick insect robot 266 Posture in underwater robot 127—133 134 242 248 251 252 Posture, tuning 254 Potential(s) and cockroach robot 360—361 368 Potential(s) and flight 453 Potential(s), generator 6 Potential(s), storage of 492 Power see also "Energy" Power and actuators 159 173—174 Power and dolphin robot 315 Power and lamprey robot 292 Power and muscles 139 142(table) 148—150 see "Shape Power and piezoelectric actuator 190—191 Power and RoboFly 477—478 Power and swimming robot 214 Power for legged robots 402 414 Power for quadruped 190—191 197—201 Power for vision robot 51—53 Power muscles 457 463—465 Power, induced 490 Power, peak vs. average 150 Power, profile 490 Power, self- 188 200—201 Power, thrust ratio 214 Power, volume-specific 190 Power-to-weight ratios 283 PREDATOR 483 Preflexes and RHex 266 372—373 375 Preflexes in cockroach 140—141 353—354 Preflexes, advantages 148 372—373 Prespike signal averaging 581 Pressure and artificial muscle 178 Pressure and cricket sound 534 Primitives see "Biomechanical primitives" prisms 77—78 Probabilistic transformation see "Genetic algorithms" Profile power 490 Propulsion see also "Vorticity propulsion" Propulsion and maneuverability 298 Propulsion in dolphin robot 316—318 Propulsive force 243—244 Protraction see "Limb positions" Protractors 247 Pseudoelasticity 118—119 Pull-in voltage 176 181—182 Pulse width modulation (PWM) and lamprey robot 288 291 Pulse width modulation (PWM) and legged robot 409 Pulse width modulation (PWM) and muscle 123—125 Pulses, current 242 243 244 q       473 476 Q-type reinforcement 236 Quadruped see "Mesoscale quadruped" Queue-based sequencers 243 254 255 Rats 227 Reaching, offensive 236 Reafference 544 Recognition of patterns 527—528 Recognition of sounds 534 538—539 Reconnaissance see "Entomopter" Recovery 183 397 Recruitment and activators 243—244 246 Recruitment of sensors 355—357 Rectilinear motion 275 282 recycling 267 484 496 499 Redundance 408—409 Reflex behavior 226—227 228—230 232 Reflexes in cockroach robot 355 Reflexes in legged robots 422 Reflexes in scorpion robot 440 443—445 Reflexes in underwater robots 255—256 Reflexes, centering 584—585 593—595 Reflexes, collision-avoidance 578—580 Reflexes, coupled oscillator 366 368—371 373 Reflexes, opto-kinetic (OKR) 74 Reflexes, optomotor 543—544 584—585 Reflexes, quasi-static 366 367—371 Reflexes, vestibulo-ocular 74 Reflexes, wiping 227 230 232 234 Reichardt motion 35—42 Reinforcement, of learning 236 Releaser library 293—295 Releasers x 243 254 Relevance 565 Resilin 492 Resonance and Entomopter 482 492 493 502 Resonance and fruit fly 578 Resonance in flight 457 464 477 482 493 Resonance in quadrupeds 189 195 Responses see also "Optomotor response" Responses to current pulses 242 243 Responses to environment input 243 Responses, center-surround 7 Responses, libraries of 251 252 Retinal chips 79—84 Retinal image 74 594—595 Retraction and flow sensors 26 Retraction and muscles 129 132 Retraction of limbs 354 361 372 378 Reverse engineering and lamprey robot 264—265 287 Reverse engineering and lobster robot 252 Reverse engineering of stick insect robot 266 Reynolds number and Entomopter 481 489 502 Reynolds number and flying thorax 471 Reynolds number for pipe flow 28 RF interrogator 503 Rheotaxis 255 Rheotaxis, odor-gated (OGR) 553—554 558 564 RHex as functional biomimesis 352—253 RHex, coordination control 353—355 363—367 371—375 RHex, dynamic reflex 367—375 RHex, preflexes 266 372—373 375 Rhythmicity and motor control 236 241 246 Rhythmicity and motor primitives 226 231 233 Ribs 302 RoboFly and power 477—479 RoboFly, actuators 475—476 RoboFly, aerodynamics 469—475 RoboFly, construction 473—475 RoboFly, design 471 RoboFly, energy 476—477 RoboLobster see "Lobster robots" Robots see also "Biomimetic robots" "Hexapod "Legged "Mesoscale "Underwater Robots, abstraction level 555 566 Robots, design factors 419—421 Robots, development 401—405 414 Robots, multimodic see "Entomopter" Robots, performance measures 555 566—568 Robots, wireless 188—201 RoboTuna, braking 299 RoboTuna, control 303 RoboTuna, design 301—304 RoboTuna, genetic algorithm 210 212 213—220 RoboTuna, housing 298 302 RoboTuna, maneuverability 298 305—306 RoboTuna, propulsion 298—299 RoboTuna, sensors 302—303 RoboTuna, swimming 299 303 304—305 RoboTuna, velocity 301 304—305 306 Rotation and force-field primitives 228 Rotation and fruit fly 584 585 589 Rotation and homing 527 Rotation and quadruped 192 194—195 Rotation in dolphin robot 313 Rotation in scorpion robot 433 437 Rotation of joints 433 Rotation of photosensors 59 Rotation of wings 453 470—471 Rotation vs. linear motion ix Rotation, self- 35 49—50 50—52 Running 353 371 395 Rust 189—190 Saccades in fruit fly 576—580 581—583 586 590 Saccades in vision model 82—85 Saccades, description 73—74 Saccades, expansion 582—583 585 SCALE see "Mesoscale quadruped" Scaling and force-field primitives 227 Scaling and lobster robot 561—562 564 Scaling and snake robots 281 Scaling, force- 190 Scanning in human vision 75 Scanning, continuous 88 Scanning, oscillatory 86 88 89 Scanning, variable-speed 57—65 Schemata 216—220 Schemata theorem 220 Scorpion robot 420 421 423 Scorpion robot, computational hardware 424—426 Scorpion robot, control 267 424—426 440—443 Scorpion robot, design components 426—427 Scorpion robot, future 446 Scorpion robot, ground contact 428—429 Scorpion robot, joint coordination 436—439 Scorpion robot, motion 429—436 Scorpion robot, posture 428 Scorpion robot, sensors 423—424 Search and rescue 268 271—273 Search engines, genetic algorithms 208—214 Search engines, probabilistic 208—213 Self-excitation 359 Self-healing 183 Self-motion, and optic-flow 47 Self-powering 188 200—201 Self-preservation 505 Self-rotation 35 49—50 50—52 Semiconductors 80 91 Sensorimotor integration see "Sensory fusion" sensors see also "Contact/bending sensors" "Flow Sensors and feedback 6—7 Sensors for cricket robot 549 Sensors for homing 495 Sensors for Mars flier 505—506 Sensors for RoboTuna 302—303 Sensors for snake robots 282 Sensors for underwater robots 243 Sensors in Entomopter 484—485 Sensors of animals x Sensors of scorpion robot 422 423—424 
                            
                     
                  
			Ðåêëàìà