Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Ayers J. — Neurotechnology for biomimetic robots
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Neurotechnology for biomimetic robots
Àâòîð: Ayers J.
Àííîòàöèÿ: The goal of neurotechnology is to confer the performance advantages of animal systems on robotic machines. Biomimetic robots differ from traditional robots in that they are agile, relatively cheap, and able to deal with real-world environments. The engineering of these robots requires a thorough understanding of the biological systems on which they are based, at both the biomechanical and physiological levels.
This book provides an in-depth overview of the field. The areas covered include myomorphic actuators, which mimic muscle action; neuromorphic sensors, which, like animal sensors, represent sensory modalities such as light, pressure, and motion in a labeled-line code; biomimetic controllers, based on the relatively simple control systems of invertebrate animals; and the autonomous behaviors that are based on an animal’s selection of behaviors from a species-specific behavioral "library." The ultimate goal is to develop a truly autonomous robot, one able to navigate and interact with its environment solely on the basis of sensory feedback without prompting from a human operator.
ßçûê:
Ðóáðèêà: Òåõíîëîãèÿ /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2002
Êîëè÷åñòâî ñòðàíèö: 636
Äîáàâëåíà â êàòàëîã: 16.10.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Patterns see also "Homing"
Patterns and crustaceans 245
Patterns and direction, in lobsters 246—248
Patterns and motor control 236 241 243—245
Patterns and motor primitives 231 235
Patterns of sound 549
Patterns, libraries of 251 252
Patterns, olfactory 108—109 558
Patterns, timing 549
Patterns, visual, and flying insects 517 576—578 584 593—594
Patterns, visual, optic flow 43—48 49—50 50—51
Payloads and insect-like robots 266 404 408
Payloads, minimal 401
Pectoral fins 336 see
Pectoral fins, hydrodynamics 327—328 337—340
Pectoral fins, motions 325—326 330—335
Pectoral fins, motor-driven 327—329
Pendulum, hanging 359
Pendulum, inverted 355—357 380n3
Perception in behavior 513—515
Perception of dark line 87 91
Perception, aliasing 423—424
Phase angle 331—332
Phase change 453—454
Phase difference and cockroach robot 370 372—373
Phase difference and feedback 372—373
Phase difference and pectoral fins 337—338 341
Phase lag 192 430—431 432
Phase regulation and energy 359—361 370—371
Phase regulation in cockroach robot 353—355 359—363 366 370—371
Phase regulation, feedback-based 361—365
Phase relationships 361—362
Phase-locking 233—234
Phonotaxis 533—534 see "Cricket
Photocurrent 87 91—92
photolithography 180
Photoreception in flies 32—33 42—43 573—574
Photoreception, Reichardt detector 36—38
Photoreceptors and angular sensitivity 58—59
Photoreceptors and contrast 87
Photoreceptors and moving images 74
Photoreceptors, ommatidia 33 34
Photoreceptors, output calculation 59—61
Photoreceptors, spacing 75
Piezoelectric actuators and Entomopter 486
Piezoelectric actuators in quadruped robot 8—9 188 190—191 197—201
Piezoelectric actuators in RoboFly 475—478
Piezoelectric ceramics 189 486
Piezoelectric materials 154 189 190—191
Piezoresistors 23
Pipes 27 168 494 see
Pitch and roll in water robots 131—133 248 252 343—345
Pitch and roll, and fins 309
Pitch and roll, and fruit fly 585
Pitch and roll, and hawkmoth 459
Pitch and roll, angles 343—345
Pitch and roll, coding for 257
Pixel arrays 33
Place coding 79—82
Plastic 25—26
Plume tracking 556—564 567
Pneumatic actuators in legged robot 404 405 406 409
Pneumatic actuators vs. servo 173—174
Pneumatic actuators, pneumatic, future type 412
Pneumatics 491
Pogo-stick template 353—354
Poincare section 366
Polarity 245
Pollutant tracking 564
polycarbonate 16
Polyester 180
Polyimide 179—181
PolyMEMS muscle and moisture 184
PolyMEMS muscle, concept 174—175
PolyMEMS muscle, fabrication 179—181
PolyMEMS muscle, reliability 182—184
PolyMEMS muscle, unit cells 175—179 181
Polymeric muscle and voltage 486
Polymeric muscle, applications 163—168
Polymeric muscle, electrostatic MEMS x 152—156 173
Polymeric muscle, examples 155—156
Polymeric muscle, future 168—169
Polymeric muscle, operation principle 153—154
Polymeric muscle, power 159—160 162
Polymeric muscle, testing 157—163
Polymers and explosives 7
Polymers for snake robots 283
Polymers, dielectric elastomer see "Dielectric elastomers"
Polymers, electroactive x 8
Polymers, thickness 178—179 183
polymethylmethacrylate (PMMA) 179
Polytetrafluoroethylene (PTFE) 291
Polyurethane 242
Polyvinyl chloride (PVC) 16
Polyvinylidene fluoride (PVDF) 179
Population coding 80
Position(s) see also "Limb positions"
Position(s) in force-field primitives 227
Position(s), changes in 368—369
Posture in flight 574
Posture in legged robots 407—408 409
Posture in scorpion robot 428
Posture in stick insect robot 266
Posture in underwater robot 127—133 134 242 248 251 252
Posture, tuning 254
Potential(s) and cockroach robot 360—361 368
Potential(s) and flight 453
Potential(s), generator 6
Potential(s), storage of 492
Power see also "Energy"
Power and actuators 159 173—174
Power and dolphin robot 315
Power and lamprey robot 292
Power and muscles 139 142(table) 148—150 see "Shape
Power and piezoelectric actuator 190—191
Power and RoboFly 477—478
Power and swimming robot 214
Power for legged robots 402 414
Power for quadruped 190—191 197—201
Power for vision robot 51—53
Power muscles 457 463—465
Power, induced 490
Power, peak vs. average 150
Power, profile 490
Power, self- 188 200—201
Power, thrust ratio 214
Power, volume-specific 190
Power-to-weight ratios 283
PREDATOR 483
Preflexes and RHex 266 372—373 375
Preflexes in cockroach 140—141 353—354
Preflexes, advantages 148 372—373
Prespike signal averaging 581
Pressure and artificial muscle 178
Pressure and cricket sound 534
Primitives see "Biomechanical primitives"
prisms 77—78
Probabilistic transformation see "Genetic algorithms"
Profile power 490
Propulsion see also "Vorticity propulsion"
Propulsion and maneuverability 298
Propulsion in dolphin robot 316—318
Propulsive force 243—244
Protraction see "Limb positions"
Protractors 247
Pseudoelasticity 118—119
Pull-in voltage 176 181—182
Pulse width modulation (PWM) and lamprey robot 288 291
Pulse width modulation (PWM) and legged robot 409
Pulse width modulation (PWM) and muscle 123—125
Pulses, current 242 243 244
q 473 476
Q-type reinforcement 236
Quadruped see "Mesoscale quadruped"
Queue-based sequencers 243 254 255
Rats 227
Reaching, offensive 236
Reafference 544
Recognition of patterns 527—528
Recognition of sounds 534 538—539
Reconnaissance see "Entomopter"
Recovery 183 397
Recruitment and activators 243—244 246
Recruitment of sensors 355—357
Rectilinear motion 275 282
recycling 267 484 496 499
Redundance 408—409
Reflex behavior 226—227 228—230 232
Reflexes in cockroach robot 355
Reflexes in legged robots 422
Reflexes in scorpion robot 440 443—445
Reflexes in underwater robots 255—256
Reflexes, centering 584—585 593—595
Reflexes, collision-avoidance 578—580
Reflexes, coupled oscillator 366 368—371 373
Reflexes, opto-kinetic (OKR) 74
Reflexes, optomotor 543—544 584—585
Reflexes, quasi-static 366 367—371
Reflexes, vestibulo-ocular 74
Reflexes, wiping 227 230 232 234
Reichardt motion 35—42
Reinforcement, of learning 236
Releaser library 293—295
Releasers x 243 254
Relevance 565
Resilin 492
Resonance and Entomopter 482 492 493 502
Resonance and fruit fly 578
Resonance in flight 457 464 477 482 493
Resonance in quadrupeds 189 195
Responses see also "Optomotor response"
Responses to current pulses 242 243
Responses to environment input 243
Responses, center-surround 7
Responses, libraries of 251 252
Retinal chips 79—84
Retinal image 74 594—595
Retraction and flow sensors 26
Retraction and muscles 129 132
Retraction of limbs 354 361 372 378
Reverse engineering and lamprey robot 264—265 287
Reverse engineering and lobster robot 252
Reverse engineering of stick insect robot 266
Reynolds number and Entomopter 481 489 502
Reynolds number and flying thorax 471
Reynolds number for pipe flow 28
RF interrogator 503
Rheotaxis 255
Rheotaxis, odor-gated (OGR) 553—554 558 564
RHex as functional biomimesis 352—253
RHex, coordination control 353—355 363—367 371—375
RHex, dynamic reflex 367—375
RHex, preflexes 266 372—373 375
Rhythmicity and motor control 236 241 246
Rhythmicity and motor primitives 226 231 233
Ribs 302
RoboFly and power 477—479
RoboFly, actuators 475—476
RoboFly, aerodynamics 469—475
RoboFly, construction 473—475
RoboFly, design 471
RoboFly, energy 476—477
RoboLobster see "Lobster robots"
Robots see also "Biomimetic robots" "Hexapod "Legged "Mesoscale "Underwater
Robots, abstraction level 555 566
Robots, design factors 419—421
Robots, development 401—405 414
Robots, multimodic see "Entomopter"
Robots, performance measures 555 566—568
Robots, wireless 188—201
RoboTuna, braking 299
RoboTuna, control 303
RoboTuna, design 301—304
RoboTuna, genetic algorithm 210 212 213—220
RoboTuna, housing 298 302
RoboTuna, maneuverability 298 305—306
RoboTuna, propulsion 298—299
RoboTuna, sensors 302—303
RoboTuna, swimming 299 303 304—305
RoboTuna, velocity 301 304—305 306
Rotation and force-field primitives 228
Rotation and fruit fly 584 585 589
Rotation and homing 527
Rotation and quadruped 192 194—195
Rotation in dolphin robot 313
Rotation in scorpion robot 433 437
Rotation of joints 433
Rotation of photosensors 59
Rotation of wings 453 470—471
Rotation vs. linear motion ix
Rotation, self- 35 49—50 50—52
Running 353 371 395
Rust 189—190
Saccades in fruit fly 576—580 581—583 586 590
Saccades in vision model 82—85
Saccades, description 73—74
Saccades, expansion 582—583 585
SCALE see "Mesoscale quadruped"
Scaling and force-field primitives 227
Scaling and lobster robot 561—562 564
Scaling and snake robots 281
Scaling, force- 190
Scanning in human vision 75
Scanning, continuous 88
Scanning, oscillatory 86 88 89
Scanning, variable-speed 57—65
Schemata 216—220
Schemata theorem 220
Scorpion robot 420 421 423
Scorpion robot, computational hardware 424—426
Scorpion robot, control 267 424—426 440—443
Scorpion robot, design components 426—427
Scorpion robot, future 446
Scorpion robot, ground contact 428—429
Scorpion robot, joint coordination 436—439
Scorpion robot, motion 429—436
Scorpion robot, posture 428
Scorpion robot, sensors 423—424
Search and rescue 268 271—273
Search engines, genetic algorithms 208—214
Search engines, probabilistic 208—213
Self-excitation 359
Self-healing 183
Self-motion, and optic-flow 47
Self-powering 188 200—201
Self-preservation 505
Self-rotation 35 49—50 50—52
Semiconductors 80 91
Sensorimotor integration see "Sensory fusion"
sensors see also "Contact/bending sensors" "Flow
Sensors and feedback 6—7
Sensors for cricket robot 549
Sensors for homing 495
Sensors for Mars flier 505—506
Sensors for RoboTuna 302—303
Sensors for snake robots 282
Sensors for underwater robots 243
Sensors in Entomopter 484—485
Sensors of animals x
Sensors of scorpion robot 422 423—424
Ðåêëàìà