Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Ayers J. — Neurotechnology for biomimetic robots
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Neurotechnology for biomimetic robots
Àâòîð: Ayers J.
Àííîòàöèÿ: The goal of neurotechnology is to confer the performance advantages of animal systems on robotic machines. Biomimetic robots differ from traditional robots in that they are agile, relatively cheap, and able to deal with real-world environments. The engineering of these robots requires a thorough understanding of the biological systems on which they are based, at both the biomechanical and physiological levels.
This book provides an in-depth overview of the field. The areas covered include myomorphic actuators, which mimic muscle action; neuromorphic sensors, which, like animal sensors, represent sensory modalities such as light, pressure, and motion in a labeled-line code; biomimetic controllers, based on the relatively simple control systems of invertebrate animals; and the autonomous behaviors that are based on an animal’s selection of behaviors from a species-specific behavioral "library." The ultimate goal is to develop a truly autonomous robot, one able to navigate and interact with its environment solely on the basis of sensory feedback without prompting from a human operator.
ßçûê:
Ðóáðèêà: Òåõíîëîãèÿ /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2002
Êîëè÷åñòâî ñòðàíèö: 636
Äîáàâëåíà â êàòàëîã: 16.10.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Abstraction 555 566
Acetone 106—107
Acoustic signals 484—485 496—499 515 see
Acrylic 157 158—159
Active cord mechanism 277
Active flow control 484 487 497
actuators see also "Biomechanical primitives" "Muscle" "Pneumatic
Actuators and impedance 144 147
Actuators and load 146
Actuators for lamprey robot 291
Actuators for legged robots 402
Actuators for snake robots 283
Actuators of dielectric elastomer 152—158 165 166 168
Actuators, bow-tie 155 156 157 164
Actuators, choice of 402
Actuators, feedback loops 7—8
Actuators, future trends 413
Actuators, linear 156
Actuators, McKibben 412 414
Actuators, MEMS x 173—183
Actuators, minimizing 189
Actuators, motor units 7—8
Actuators, myomorphic 242 243—245
Actuators, piezoelectric 190—191 197—201 475—478 486
Actuators, rolled 156 157 167—168
Actuators, servo 173
Actuators, trench-type 155 167
ADAMS simulation 429
Adaptivity of unit cell design 178—179
Adaptivity to light 39
Adaptivity to water currents 134 249—250
Adaptivity, rules for 420
Aerodynamics, of insect flight 470—475 488—490
Aileron motion 492
Aimed-trajectory formation 227 236
Air flow 28 490
Air stream 455
Aircraft see also "Entomopter"
Aircraft, landing 503 606—608
Aircraft, stabilization of 65—70
Aircraft, unmanned 482—484
Aircraft, visually controlled 65—70
Aliasing, perceptional 423—424
Alloys see "Nitinol" "Shape
Aluminum in actuators 180 183
Aluminum in scorpion robot 446
Aluminum, dielectric coating 180
Ambulation 245 265 see "Walking"
Amphibians 413 see
Amplitude in snake gait 274—275
Amplitude of steps 396—397
Amyl acetate 106—107
Analog homing 518 520—524 526
Analog neuron network 451—452
Analog sensors 251 256—257
Analysis, finite element (FEA) 177
Anemometers 23
Angles and phonotaxis 540
Angles in swimming 343 345
Angles of attack 492
Angles of descent 600 601
Angles of leg liftoff 365
Angles, approach 577
Angles, caudal fin 321
Angles, feathering 338
Angles, flapping 338
Angles, heading 305—306 540 542 558
Angles, joints and feedback 391
Angles, joints and posture 129
Angles, joints, swing and stance role 392 408 410 432
Angles, lead-lag 338
Angles, oscillatory pitch 343
Angles, pectoral fin 327 338
Angles, phase 331—332
Angles, pitch and roll 343—345
Angles, sinusoidal 338
Angles, touchdown 365—367 371
Angular resolution 33
Angular velocity of joint movement 391 392 433—436 437
Angular velocity of visual image 44—45 58—65 596 600—606
Antennae 16—17 250
Ants 528
Applications, indoor use 483 490 495 576
Applications, land mine detection 106 108 111
Applications, Mars exploration 499—507
Applications, mine detection 13—14 106 108 111
Applications, pipe inspection 168 268
Applications, pollutant tracking 268 564
Applications, reconnaissance see "Entomopter"
Applications, search and rescue 268 271—273
Applications, unmanned aerial vehicles 482—484
Asymmetry, in vision robot 49 50—51
Autonomy and pattern generators 383
Autonomy of Entomopter 495—499 503—504
Autonomy of legged robots 413—415
Autonomy, long term 6
Autonomy, reactive 254 383
Autonomy, supervised 256 293—295 391—392
Average landmark vector 517 519—527 528 531
Averaging, prespike signal 581
Band-pass filter 391
Bandwidth of actuators 173
Bandwidth of visual sensor 91—92
Bass robot see also "Pectoral fins"
Bass robot, control 330—333
Bass robot, depth 340 344
Bass robot, design 329—330 333 340—343
Bass robot, swimming 343—345
Bats 484
Beam for lamprey robot 292
Beam in contact/bending sensor 18—20 22—23
Beam theory 18
Beam, ultrasonic 482 496—499
Bearings, in quadruped 189—190
Bees in tunnels 593—595
Bees, centering reflex 584—585 593—595
Bees, landings 598—605
Bees, olfaction 588—589
Bees, speed control 595—598
Bees, vision 584—589
behavior see also "Autonomy" "Obstacle
Behavior and sound 534 538—543
Behavior libraries for lamprey robot 287 289
Behavior libraries for lobster robot 251 252
Behavior, adaptive 178—179 420
Behavior, analysis 251—254
Behavior, choice 254
Behavior, finite-state analysis 251—254
Behavior, fixation 586
Behavior, food search 573 588—589 590
Behavior, goal-directed 4
Behavior, homing 495 517 see
Behavior, hybrid acts 248—249
Behavior, intensity increase 256
Behavior, odor tracking 515 553—554 see
Behavior, perceptive 513—515
Behavior, plume-tracking 562—564
Behavior, quantization 251 253
Behavior, reflex 226—227 228—230 232
Behavior, selectivity 556
Behavior, self-preservation 505
Behavior, synthetic see "Biomechanical primitives"
Bending 14—22 410 see
Bias, directional 547
BICSAAR robots see "Lobster robots"
Biomechanical primitives in controller 231—236
Biomechanical primitives, defined 226
Biomechanical primitives, force-field 9 226 227—229
Biomechanical primitives, future research 236
Biomechanical primitives, motor learning 227—231 231—236
Biomechanical primitives, spinal 225—227
Biomechanical primitives, study approaches 224—225
Biomechanical primitives, vestibular 230
Biomimetic robotics vs. nature 4 351
Biomimetic robotics, purpose 553—555 565—568 609
Biomimetic robotics, research needs 4—5
Biomorphic plant 242
Bipeds 355—357 364—368 371—375 377—379
Black bass 325—326 see
Blowflies 267—268 476 586
Body geometry 395—396
Body simulation 395
Brachiating robots 359
Brain of fly 33—34
Brain, force-field primitives 230
Brain, motion detectors 34
Brain, sensory interpretation 6 33—34
Braking by muscle 139—141 145
Braking in RoboTuna 299
Braking, car example 368
Breathing 168 169
Bridge drives 425
bridges 410
Burst generators 231
cameras 75 87 93 606
Cantilever beams in contact/bending sensor 18—20 22—23
Cantilever beams in flow sensors 23 24—25
Cartesian coordinates 266
Cats 410
Causality, in underwater robot 255
Cells, large monopolar (LMCs) 33—34
Cells, unit, of muscle 175—179
Center-surround responses 7
Centering reflex 584—585 593—595
Central nervous system 3—4 223—231 see "Spinal
Central pattern generators (CPGs) and scorpion robot 440—441
Central pattern generators (CPGs) for cockroach robot 357—358 362—363 371—375
Central pattern generators (CPGs) for lobster robot 9
Central pattern generators (CPGs) in natural brain 4
Ceramics, piezoelectric 189 190—191 197—201 486
Charge trapping 180 182 183
Chelae 252
Chemo-orientation 555 556—564 567 574
Chemoreceptors 559 561
Choice 233—236 254
circuits see also "VLSI"
Circuits in legged robot 410
Circuits, elastodynamic quadruped 199—200
Circuits, fruit fly saccades 583
Circuits, homing 518 520—522
Circuits, integrate-and-fire 91
Circuits, lamprey software 291
Circuits, manufacturing 179
Circuits, motor primitives 227 233
Circuits, neural controller 245—249
Circuits, optomoter response 543
Circuits, pattern-generating 245—249
Circuits, phonotaxis 539—541 543 549—550
Circuits, polymeric muscle 152 169
Circuits, Reichardt motion 39 41
Circuits, sensory integration 410
Clever Hans 513
Climbing, legged robot 403 406 408 410
Climbing, snake robot 275
Closed-path motion 192
Cockroach robot 266—267 359—362 366 368—371 379n1
Cockroaches and force-time response 160—161
Cockroaches, climbing 410
Cockroaches, exoskeleton 412
Cockroaches, feedback in 410
Cockroaches, leg analysis 404 406
Cockroaches, leg stiffness/damping 140 151
Cockroaches, running 352—353
Cockroaches, stability 265—266
Cockroaches, walking 8
Coding for underwater robot 245 248 250 256—257
Coding mechanisms 5
Coding, genetic algorithm 209
Coding, oculomotor system 79—82
Coding, population 80
Coding, string-based 209
Coding, supervision commands 256
Collision angles 577
Colors 33
Command stack 254
Commands for walking 372 398
Commands, coding 256
Commands, superposition of 248—249
Communication and Mars exploration 506—507
Communication between crickets 515 533—534
Communication in scorpion robot 424
compass 303
Concertina progression 274—275
Configuration, parallel vs. serial 193—194
Contact 243 see "Obstacle
Contact/bending sensors in legged robot 410
Contact/bending sensors, cantilever beam 18—20
Contact/bending sensors, categories 14
Contact/bending sensors, contact- vs. flow-caused 17
Contact/bending sensors, design constraints 15
Contact/bending sensors, micromachining 15—16 16
Contact/bending sensors, neuromorphic 249—250
Contact/bending sensors, NUMEM 14—15
Contact/bending sensors, overbending 20
Contact/bending sensors, residual stress 22—23 29
Contact/bending sensors, sensitivity 20
Contact/bending sensors, stopper sensing 19—20 22
Contact/bending sensors, switches 14—15 17—19 20
Contact/bending sensors, testing 20—23
Contraction and flight 453 457 464—465
Contraction and power levels 128
Contraction of wasp muscle 492
Contrast and distance 63—65
Contrast and eye movements 63—65 67—70 85—86
Contrast and optomotor system 63—65 85—86 586
Contrast in vibration-based sensor 87
Control see also "Coordination" "Feedback" "Feed-forward "Flow "Optomotor
Control and actuator choice 402
Control and joints 388
Control and silicon 188—189
Control of Bass II 330—333
Control of Entomopter 487
Control of landings 606—608
Control of limbs 388
Control of motor reflexes 227—229 233—236
Control of quadruped 188—189 190 197 201 202
Control of RoboTuna 303
Control of speed 392 595—597 598
Control of yaw 335—336
Control, (de)centralized 359
Control, architectures xi 248—249
Control, closed-loop 266 606
Control, decision system 233—236
Control, directional 485—486
Control, dive-plane 303
Control, feed-forward 357—358 359 362—363 371—375
Control, hierarchical 384 409 424—425
Control, modular 384
Control, open-loop 266 303 333 357—358 see
Control, rendezvous 330—332
Control, wireless 202
Controllers and adjustments 9
Controllers and memory 9
Controllers for cockroach robot 354 355—357
Controllers for lamprey robot 287 291 359
Controllers for legged (insect-like) robot 402 407 409
Controllers for snake robot 277 278—281
Controllers for underwater robots 245—257
Controllers from motor primitives 231—236
Controllers of gait 266—267 388—394
Ðåêëàìà