Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Grünbaum B. — Convex Polytopes
Grünbaum B. — Convex Polytopes



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Convex Polytopes

Автор: Grünbaum B.

Аннотация:

The appearance of Gruenbaum's book Convex Polytopes in 1967 was a moment of grace to geometers and combinatorialists. The special spirit of the book is very much alive even in those chapters where the book's immense influence made them quickly obsolete. Some other chapters promise beautiful unexplored land for future research. The appearance of the new edition is going to be another moment of grace. Kaibel, Klee and Ziegler were able to update the convex polytope saga in a clear, accurate, lively, and inspired way. —Gil Kalai, The Hebrew University of Jerusalem The original book of Gruenbaum has provided the central reference for work in this active area of mathematics for the past 35 years...I first consulted this book as a graduate student in 1967; yet, even today, I am surprised again and again by what I find there. It is an amazingly complete reference for work on this subject up to that time and continues to be a major influence on research to this day. —Louis J. Billera, Cornell University The original edition of Convex Polytopes inspired a whole generation of grateful workers in polytope theory. Without it, it is doubtful whether many of the subsequent advances in the subject would have been made. The many seeds it sowed have since grown into healthy trees, with vigorous branches and luxuriant foliage. It is good to see it in print once again. —Peter McMullen, University College LondonThe combinatorial study of convex polytopes is today an extremely active and healthy area of mathematical research, and the number and depth of its relationships to other parts of mathematics have grown astonishingly since Convex Polytopes was first published in 1966. The new edition contains the full text of the original and the addition of notes at the end of each chapter. The notes are intended to bridge the thirty five years of intensive research on polytopes that were to a large extent initiated, guided, motivated and fuelled by the first edition of Convex Polytopes. The new material provides a direct guide to more than 400 papers and books that have appeared since 1967. Branko Grünbaum is Professor of Mathematics at the University of Washington.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 2003

Количество страниц: 466

Добавлена в каталог: 30.06.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Transition sequence      383
Translation invariance      3
Traveling salesman polytope      69a
TREE      369
Triangulation of a cube      30b
Triangulation of a polytope      96b
Triangulation of an n-gon      30b
Tverberg’s theorem      30b
Twisted lexicographic order      389a
Unambiguous graphs      227
Unambiguous simplex $\varphi$-path      379
Unavoidable small faces      224b
Uniform polytope      413 423a
Unit distance code      382
Unit vector      2
Universal approximation class      331
Universality theorem for 4-polytopes      96a
Universality theorem for d-polytopes with d+4 vertices      96a
Upper bound conjecture      182 (see also “Upper bound theorem”)
Upper bound theorem for polytopes      171a 198a
Upper bound theorem for simplicial spheres      171a 198a
Upper bound theorem, asymptotic version      142a
Upper bound theorem, g-theorem      198b
Upper bound theorem, monotone paths      389b
Upper boundary operator      198a
Valence      213
Valence, 3-valent element      236
Valence, n-valent graph      213 236
Valuation      315 315b
Van Kampen — Flores theorem      201
van Kampen — Flores theorem, Borsuk — Ulam theorem      224a
van Kampen — Flores theorem, proof      210
Variable, basic      378
Variable, nonbasic      378
Variable, simplex algorithm      378
Vector addition of convex sets      9
Vector addition of polytopes      38 316
Vector addition, Blaschke sum      337
Vector sum      316
Vertex      31
Vertex complexity      52a
Vertex figure      49
Vertex figure, Gale-diagram      90
Vertex figure, regular polytopes      412
Vertex figure, simple polytopes      342
Visualization of polytopes      52c
Volume      338 416
Volume, coding size      340b
Volume, computation in fixed dimension      340b
Volume, hardness of computation      340b
Volume, randomized algorithm      340b
Volume, Steiner point      315a
Walkup conjecture      96b
Weak d-ambiguity      226 228
wedge      69b 305
Weighing design for spring balance      423d
Whitney’s theorem      213
Whitney’s theorem, Menger’s theorem      224b
width      423c
Wythoff construction      171b
Zonohedron      405
Zonoids      340b
Zonotope      323
Zonotope, computing the volume      340c
Zonotope, cubical      69b
Zonotope, hyperplane arrangements      410a
Zonotope, irreducible      323
Zonotope, reconstruction from 1-skeleton      234b
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте