Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Grünbaum B. — Convex Polytopes
Grünbaum B. — Convex Polytopes



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Convex Polytopes

Автор: Grünbaum B.

Аннотация:

The appearance of Gruenbaum's book Convex Polytopes in 1967 was a moment of grace to geometers and combinatorialists. The special spirit of the book is very much alive even in those chapters where the book's immense influence made them quickly obsolete. Some other chapters promise beautiful unexplored land for future research. The appearance of the new edition is going to be another moment of grace. Kaibel, Klee and Ziegler were able to update the convex polytope saga in a clear, accurate, lively, and inspired way. —Gil Kalai, The Hebrew University of Jerusalem The original book of Gruenbaum has provided the central reference for work in this active area of mathematics for the past 35 years...I first consulted this book as a graduate student in 1967; yet, even today, I am surprised again and again by what I find there. It is an amazingly complete reference for work on this subject up to that time and continues to be a major influence on research to this day. —Louis J. Billera, Cornell University The original edition of Convex Polytopes inspired a whole generation of grateful workers in polytope theory. Without it, it is doubtful whether many of the subsequent advances in the subject would have been made. The many seeds it sowed have since grown into healthy trees, with vigorous branches and luxuriant foliage. It is good to see it in print once again. —Peter McMullen, University College LondonThe combinatorial study of convex polytopes is today an extremely active and healthy area of mathematical research, and the number and depth of its relationships to other parts of mathematics have grown astonishingly since Convex Polytopes was first published in 1966. The new edition contains the full text of the original and the addition of notes at the end of each chapter. The notes are intended to bridge the thirty five years of intensive research on polytopes that were to a large extent initiated, guided, motivated and fuelled by the first edition of Convex Polytopes. The new material provides a direct guide to more than 400 papers and books that have appeared since 1967. Branko Grünbaum is Professor of Mathematics at the University of Washington.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 2003

Количество страниц: 466

Добавлена в каталог: 30.06.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Cubical polytope, angle-sums relations      313
Cubical polytope, f-vectors      156
Cubical polytope, h-vector      171b
Cubical polytope, neighborly      69b
Cubical polytopes, family of      82
Cuboctahedron      340b 423a
cuboid      59
Cuboid, face numbers      156
Cuboid, images of cubes      66
Cummings criterion      294 394
Curvature centroid      307 314
Cut polytope      69a
Cutting plane approach      69a
Cyclic oriented matroid      7b
Cyclic polytope      61
Cyclic polytope with d+2 vertices      69b 98 168
Cyclic polytope, affine hull of f-vectors      147
Cyclic polytope, ambiguity of complexes      225
Cyclic polytope, embedding graphs into $R^{3}$      212
Cyclic polytope, extremal path-lengths      368
Cyclic polytope, f-vectors of 4-polytopes      191
Cyclic polytope, height of the duals      389b
Cyclic polytope, Hirsch conjecture for the duals      355b
Cyclic polytope, history      127
Cyclic polytope, neighborly poly topes      122 124
Cyclic polytope, partial proof of the upper bound theorem      106 175
Cyclic polytope, realizations      129b
Cyclic polytope, realizations with full symmetry      69b
Cyclic polytope, spanning trees of bounded valence      296
Cyclic polytope, totally positive matrices      129b
Cyclic polytope, twisted lexicographic order      389a
Cyclic polytopes, edges of 4-dimensional      66
Cyclically k-connected 3 polytope      365
Cylindrical algebraic decomposition      96b
d-realizability of abstract d-complexes      206
d-realizability of abstract schemes      91
d-realizability of lattices      231
d-realizability of star-diagrams      106 114
d-step conjecture      349 355a
d-step conjecture, $W_{\nu}$-paths      354
d-unambiguity of (d-2)-skeleta of d-poly topes      228
d-unambiguity of 1-skeleta of capped cubical d-polytopes      234b
d-unambiguity of 1-skeleta of duals of cubical d-zonotopes      234b
d-unambiguity of 1-skeleta of simple polytopes      234a
d-unambiguity of 1-skeleta of zonotopes      234b
d-unambiguity of [d/2]-skeleta of d-cubes      234b
d-unambiguity of [d/2]-skeleta of simplicial d-polytopes      234a
Dantzig figure      350
Dantzig’s pivot rule      389b
Decomposable polytope      318
Decomposable polytope, Blaschke addition      333
Decomposition and projective transformations      340a
Decomposition of 3-polytopes      340a
Decomposition of 4-poly topes      340a
Decomposition of general convex sets      340a
Decomposition of polyhedra      315b 340a
Decomposition of simple polytopes      340a
Deformed product      389b
Degree of singularity      269
Degree of total separability      217
Dehn — Sommerville equations for Eulerian manifolds      152
Dehn — Sommerville equations for simple arrangements      392
Dehn — Sommerville equations for simplicial 3-polytopes      189
Dehn — Sommerville equations for simplicial polytopes      146 171a
Dehn — Sommerville equations, cyclic polytopes      168
Dehn — Sommerville equations, equivariant generalization      171b
Dehn — Sommerville equations, generalized      198c
Dehn — Sommerville equations, history      170
Dense family of polytopes      81
Description of a polytope      see “Representation of a polytope”
Design of experiments      340b
Diagram      44
Diagram, Blaschke      417
Diagram, central      121b
Diagram, dual      45
Diagram, dualizable      52c
Diagram, edge-facet (ef-)      350
Diagram, Gale      see “Gale-diagram”
Diagram, inverted      45
Diagram, invertible      52c
Diagram, non-polytopal      52c 224a
Diagram, Schlegel      43 (see also “Schlegel diagram”)
Diagram, simple      52c
Diagram, standard      see “Standard Gale-diagram”
Diagram, star      see “Star-diagram”
Diagrams, 2-diagrams      244 286
Diagrams, 3-diagrams, that are not Schlegel      188 219
Diameter      419
Diameter of a Gale-diagram      109
Diameter of a polytope      341
Diameter of a set      5
Diameter of duals of neighborly polytopes      355b
Diameter, computation      423c
Diameter, facet-diameter      343
Diameter, upper bounds      355a—355b
Difference set of a convex set      322
Difference set of a simplex      340b
DIMENSION      3
Dimensional ambiguity      225 229
Directed diameter      see “Diameter”
Discrete code      382
Dissection      315b
Distance between sets      6
Distance in a metric space      5
Distance, Hausdorff      6
Distance, path-distance      341
Dodecahedron, 3-polytopes without triangles and quadrilaterals      198d
Dodecahedron, distances between vertices      420
Double counting      143
Double-description method      52b
Dual polytope      46
Dual polytope, self      see “Self-dual polytope”
Eberhard’s Theorem      253
Eberhard’s theorem, extensions      296b 405
Eberhard’s theorem, history      291
EDGE      31 200
Edge-facet (ef-) diagram      350
Elementary transformation      236
Ellipsoid method      30b
Embeddings of simplicial complexes      224a
Entangled      210
Enumeration of 2-arrangements      394
Enumeration of 3-polytopes      296c
Enumeration of 4-polytopes with 8 vertices      96b
Enumeration of combinatorial types of polytopes      90
Enumeration of neighborly 4-polytopes with 10 vertices      96b
Enumeration of neighborly 6-polytopes with 10 vertices      96b
Enumeration of self-dual 3-polytopes      52d
Enumeration of simplicial 3-polytopes      296c
Enumeration of simplicial 4-polytopes with 9 vertices      96b
Enumeration of the faces of a polytope      90
Equifacetted manifold      423a
Equifacetted polytope      423a
Equilateral set      423d
Equilibrated system      332
Equilibrated system of vectors      340c
Equilibrated system, fully      332
Equilibrium embedding      296a
Equisurrounded 3-polytopes      292
EQUIVALENCE      38
Equivalence of arrangements      394
Equivalence, k-equivalence      225 231
Equivalent vertices      413
Equivalent, combinatorially      38
Equivalent, projectively      see “Projectively equivalent”
Equivariant topology      30b
Erdoes — Szekeres theorem      30b
Euclidean space      7a
Euler characteristic      138
Euler hyperplane      136
Euler hyperplane, cubical polytopes      156
Euler hyperplane, quasi-simplicial polytopes      153
Euler — Poincare formula      see “Euler’s equation”
Eulerian lattice      142b
Eulerian manifold      141
Eulerian manifold, boundary complexes of polytopes      141
Eulerian manifold, Dehn — Sommerville equations      152
Eulerian manifold, upper bound conjecture      182
Eulerian poset      142b
Euler’s equation      131
Euler’s equation for 3-polytopes      236
Euler’s equation for arrangements      391
Euler’s equation, angle-sums      297
Euler’s equation, Dehn — Sommerville equations      145
Euler’s equation, generalization      137
Euler’s equation, Gram’s equation      315a
Euler’s equation, sweeps      142a
Euler’s theorem      131 291
Exposed point      17 30a
Exposed point, k-exposed point      20
External angle      308
Extreme point      17 30a
Extreme point, k-extreme point      20
f-vector      130
f-vector, 4-polytopes      191 198d
f-vector, arrangements      390 399
f-vector, cubical polytopes      156
f-vector, Eulerian manifolds      152
f-vector, Eulerian posets      142b
f-vector, quasi-simplicial polytopes      153
f-vector, simplicial polytopes      see “Simplicial polytope”
Face function      30a
Face lattice, Euler’s equation      142b
Face lattice, reconstruction from an oracle      52b
Face of a convex set      17
Face of a point set      88
Face of a polytope      31
Face of an arrangement      390
Face ring      198a (see also “Stanley — Reisner ring”)
Face ring and h-vector      171a
Face, improper      17
Face, j-face      21
Face, x-face      350
Facet      342
Facet complexity      52a
Facet of a polyhedral set      26
Facet of a polytope      31 71
Facet splitting      129a
Facet tile      423b
Facet-diameter      342
Fan      52c
Fan, centrally symmetric      see “Centrally symmetric”
Fan, g-theorem      198b
Farkas lemma      96a
Fatness of a 4-polytope      198d
Feasible region      347
Fibonacci numbers      198c
Final polynomial      96b
Finite reflection group      171b 410b
First-order sentence      91
Fixing system      423 423c
Fixing system, primitive      423
Flag f-vector      198a 198c
Flag h-vector      198c
FLAGTOOL      224b
Flat      3
Four-color problem      127 284 418
Four-color problem, cyclically 5-connected 3-polytopes      365
Four-color problem, Hamiltonian circuits      356
Four-color problem, solution      389a
Fourier — Motzkin elimination method      52b
Free sum      69b
Fullerene      296b
Fully equilibrated system      332
Functional analysis      30a 96a
g-theorem      198a
g-theorem, generalizations      198b
g-theorem, matrix formulation      198a
g-theorem, necessity part and toric varieties      171b
g-theorem, polytope algebra      340a
Gale-diagram      89
Gale-diagram, affine      96a
Gale-diagram, construction of a non-rational 8-polytope      95
Gale-diagram, contracted      109 120
Gale-diagram, distended      109
Gale-diagram, interpretations      96a
Gale-diagram, k-neighborly polytopes      126
Gale-diagram, neighborly polytopes      129b
Gale-diagram, polytopes with few vertices      108
Gale-diagram, quotients of neighborly polytopes      129b
Gale-diagram, standard      109
Gale-diagram, winding numbers      198b
Gale-transform      86 119
Gale’s evenness condition      62
Gale’s evenness condition, star-diagrams      106
Gale’s lemma      129b
General position      87 126
General position of hyperplanes      58
General position of points      4 57
Generalized arrangement      407
Generalized bipyramid      69b
Generalized Dehn — Sommerville equations      198c
Generalized lower bound conjecture      198b
Generalized lower bound theorem      198b
Generalized prismoid      65
Generalized regular polytope      423a
Geodesic arc      239
Geometric cell complex      51
Geometry of numbers      30a 52a
Gosset — Elte polytope      171b
Gradient, nonbasic      378
Gram’s equation      298 304 315a
Graph      212
Graph of a complex      138
Graph of a polytope      212 341
Graph of an arrangement      397
Graph, planar      235 358
Gray code      382 389b
Greatest increase pivot rule      389b
h-vector      171a
h-vector of a cubical polytope      171b
h-vector of a simplicial polytope      see “Simplicial polytope”
Hadamard’s conjecture      423d
Hadwiger — Nelson problem      423b
Half cube      171b
Halfspace      2
Halfspace, polytopes      31
Halfspaces, intersections of      12
Hamilton game      356
Hamiltonian circuit      356 368
Hamiltonian path      356 366
Hamiltonicity, four-color problem      389a
Hamiltonicity, graphs of simple polytopes      389a
Hanner polytope      224b
Hard Lefschetz theorem      171b
Hausdorff distance      6
Hausdorff measures of skeletons      423b
Hausdorff metric, approximation of polytopes by vector sums      324
Hausdorff metric, continuity of $\zeta_{k}(P)$      416
Hausdorff metric, lower semicontinuity of $f_{k}(P)$      83
Height of an element in a poset      231
Height, simplex      376
Height, steep      376
Height, strict      376
Helly-type theorem      22 30b 126
Hexagon      340b
Hilbert, tenth problem      96b
Hilbert, third problem      315b
Hirsch conjecture      349 355a
Hirsch conjecture for simplicial spheres      355b
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте