Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Grünbaum B. — Convex Polytopes
Grünbaum B. — Convex Polytopes



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Convex Polytopes

Автор: Grünbaum B.

Аннотация:

The appearance of Gruenbaum's book Convex Polytopes in 1967 was a moment of grace to geometers and combinatorialists. The special spirit of the book is very much alive even in those chapters where the book's immense influence made them quickly obsolete. Some other chapters promise beautiful unexplored land for future research. The appearance of the new edition is going to be another moment of grace. Kaibel, Klee and Ziegler were able to update the convex polytope saga in a clear, accurate, lively, and inspired way. —Gil Kalai, The Hebrew University of Jerusalem The original book of Gruenbaum has provided the central reference for work in this active area of mathematics for the past 35 years...I first consulted this book as a graduate student in 1967; yet, even today, I am surprised again and again by what I find there. It is an amazingly complete reference for work on this subject up to that time and continues to be a major influence on research to this day. —Louis J. Billera, Cornell University The original edition of Convex Polytopes inspired a whole generation of grateful workers in polytope theory. Without it, it is doubtful whether many of the subsequent advances in the subject would have been made. The many seeds it sowed have since grown into healthy trees, with vigorous branches and luxuriant foliage. It is good to see it in print once again. —Peter McMullen, University College LondonThe combinatorial study of convex polytopes is today an extremely active and healthy area of mathematical research, and the number and depth of its relationships to other parts of mathematics have grown astonishingly since Convex Polytopes was first published in 1966. The new edition contains the full text of the original and the addition of notes at the end of each chapter. The notes are intended to bridge the thirty five years of intensive research on polytopes that were to a large extent initiated, guided, motivated and fuelled by the first edition of Convex Polytopes. The new material provides a direct guide to more than 400 papers and books that have appeared since 1967. Branko Grünbaum is Professor of Mathematics at the University of Washington.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 2003

Количество страниц: 466

Добавлена в каталог: 30.06.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Polytope, shellability      142a
Polytope, simple      see “Simple polytope”
Polytope, simplicial      see “Simplicial polytope”
Polytope, spherical      7a
Polytope, stacked      198b
Polytope, summand      316
Polytope, type (2,2)      69a 82 96b
Polytope, type (2,d-2)      171b 428b
Polytope, type (3,d-3)      171b
Polytope, type (4,4)      69a
Polytope, type (k,h)      58 65 69a 169
Polytope, type (r+2,s+t-1)      171b
Polytope, unavoidable small faces      224b
Polytope, uniform      171b 413 423a
Polytopes, enumeration of      see “Enumeration”
Polytopes, number of      see “Number”
Polytopes, related      50
Poonem      20
Poonem, not being a face      30a
Poonem, polyhedral sets      26
Positively homogeneous function      13
Primitive fixing system      423
Primitive illuminating set      422
Primitive polytope      423
Prism, d-prism      56
Prism, k-fold d-prism      56
Prismoid      57
Prismoid, generalized      65
Prismoid, indecomposability      323
Prismoid, proof of Euler’s theorem      131
Projection constant      73
Projection of a polytope      71
Projection, radial      23
Projective equivalence      5
Projective equivalence, Gale-transforms      89
Projective geometry      7b
Projective space      4
Projective space, arrangements      390
Projective space, configurations      93
Projective space, Euler characteristic      142
Projective transformation      4 7b
Projective transformation of convex sets      21 35
Projective transformation of d+3 points in $R^{d}$      126
Projective transformation of polytopes      67
Projective transformation, admissible      7a
Projective transformation, Gale-diagrams      87
Projective transformation, permissible      4
Projective transformation, piecewise      41
Projective transformation, polytopes inscribed into spheres      285
Projectively convex set      29
Projectively realizable sequence      405
Projectively regular polytope      412
Projectively unique      68
Projectively unique, d-polytopes with d+3 vertices      120
Projectively unique, non-rational 8-polytope      96
Projectively unique, polytopes with not, facets      208
Pseudo-hyperplane arrangement      410a
Pseudo-hyperplane arrangement, number of simplicial regions      410b
Pseudo-line      408
Pseudo-line arrangement      410a
Pseudo-line arrangement, number of triangles      410b
Pulling      82 96b
Pushing      82 96b
Pyramid      54
Pyramid, r-fold      54
Pyramidal polytope      68 88
Pyramidoid      63
Pyramidoid, indecomposability      323
Pyramids, f-vectors of r-fold      140
Pyramids, indecomposability of r-fold      323
Pyramids, r-fold, and d-polytopes with d+2 vertices      100
Pyramids, r-fold, and pyramidoids      64
Quasi-polyhedral      36
Quasi-simplicial polytope      59
Quasi-simplicial polytope, Euler hyperplane      137
Quasi-simplicial polytope, f-vectors      153
Radial projection      23 200
Radius of a polytope      341
Radon’s theorem      16
Radon’s theorem, k-neighborly polytopes      123
Ramsey theory      7b 30b
Ramsey’s theorem      22 126
Random walk      340b
Random-edge pivot rule      389b
Random-facet pivot rule      389b
Rational polytope      52a 92
Rational polytope, decidability of face lattices      96b
Rational polytope, perturbing a polytope with d+3 vertices      119
Rational polytope, Steinitz’ theorem      244
Rational space, polytopes      92
Rational space, sections      76
Ray shooting      52a
readability      see “d-realizability”
Readability of 2-complexes      253
Readability, $(\mathcal{P})$-readability, of a complex      see “$(\mathcal{P}^d)$-realizable”
Readability, $(\mathcal{P}^d)$-readability, of a complex      see “$(\mathcal{P}^d)$-realizable”
Readability, 3-readability, of a sequence      see “3-realizable sequence”
Readability, projective, of a sequence      see “Projectively realizable sequence”
Reconstruction of duals of capped cubical polytopes from their 1-skeleta      234b
Reconstruction of duals of cubical zonotopes from their 1-skeleta      234b
Reconstruction of polytopes from their (d-2)-skeleta      234a
Reconstruction of simple polytopes from their 1-skeleta      234a
Reconstruction of simplicial polytopes from their [d/2]-skeleta      234a
Reconstruction of zonotopes from their 1-skeleta      234b
Reducible convex set      26 322
Reducible polytope      322
Reduction, proof of Steinitz’s theorem      237 (see also “$\Delta Y$-transformation”)
Reduction, proof on realizable sequences      272
Refinement map      199
Refinement of a complete graph in a polytopal graph      214
Refinement of a complex      199
Refinement of the boundary complex of a simplex      219
Reflection group      see “Finite reflection group”
Regular cell complex, Eulerian lattices      142b
Regular cell complex, intersection property      142b
Regular cell complex, strongly      142b
Regular polytope      423a
Regular polytope, affinely      412
Regular polytope, combinatorially      413
Regular polytope, projectively      412
Regular-faced polytope      414
Related polytopes      50 52c
Relative boundary      9
Relative interior      9 428a
Representation of a polytope      52a
Representation of a polytope as a section      96a
Representation of a polytope, $\mathcal{H}$-description      52a
Representation of a polytope, $\mathcal{V}$-description      52a
Representation of a polytope, alternative      52b
Representation of a polytope, coding size      52a 296d
Representation of a polytope, computation      52a
Representation of a polytope, oracle      52b
Representation of a polytope, polynomial inequalities      52b
Reverse search      52a
Rigidity theorem      411
Rigidity theory, lower bound theorem      198a
Rigidity theory, Steinitz’s theorem      296a
Rotation distances of trees      30b
Rubber band method      296a
Scalar product      2
Scheme of a polytope      90
Scheme, abstract      91
Schlegel diagram      43 52c
Schlegel diagram, 3-polytopes      235 244
Schlegel diagram, circumcircles      287
Schlegel diagram, embedding graphs into cyclic 4-polytopes      212
Schlegel diagram, history      127
Schlegel diagrams, 3-diagrams not being      219
Section of a polytope      71
Selection theorem      10 325
Self-dual polytope      48
Self-dual polytope, pyramids      69
Self-dual polytopes, density of the family of 3-dimensional      82
Self-dual polytopes, enumeration of 3-dimensional      289
Semi-algebraic set      52b
Semi-algebraic variety      96a
Semiregular polytope      423a
Semispaces      13
Separated set      10
Separated sets, strictly      10
Separation in graphs      217
Sewing      129a
Shadow vertex pivot rule      389b
Shape matching      315b
Shellability of polytopes      142a
Shellability, upper bound theorem      198a
Simple circuit      356 381
Simple complex      206
Simple d-arrangement      391
Simple path      356
Simple polytope      58
Simple polytope, affine hull of f-vectors      170
Simple polytope, decomposability      321
Simple polytope, degree of total separability      218
Simple polytope, h-simple polytope      58
Simple polytope, incidence equation      144
Simple polytope, Perles’ conjecture on the facet subgraphs      234a
Simple polytope, reconstruction from 1-skeleton      234a
Simple polytope, refinements of boundary complexes      206
Simple polytope, relations between the Steiner points of the faces      311
simplex      53
Simplex $\varphi$-path      376
Simplex $\varphi$-path, unambiguous      379
Simplex algorithm      377 389b
Simplex height      376
Simplex, combinatorial type      53
Simplex, embedding skeleta of simplices      210
Simplex, generalized bipyramid of two simplices      64
Simplex, sections of simplices      71
Simplex, simplices as regular polytopes      412
Simplex, spherical      306
Simplicial complex      59
Simplicial complex, embedding      67 202 224a
Simplicial complex, minimal face numbers      179
Simplicial polyhedral complex      51
Simplicial polytope      57
Simplicial polytope with d+2 vertices      97
Simplicial polytope, angle-sums relations      307
Simplicial polytope, Dehn — Sommerville equations      171a
Simplicial polytope, f-vector and h-vector      171a
Simplicial polytope, f-vectors      145
Simplicial polytope, g-theorem      171b
Simplicial polytope, Gale-transforms      88
Simplicial polytope, h-vector and face ring      171a
Simplicial polytope, k-simplicial polytope      58
Simplicial polytope, neighborly polytopes      124
Simplicial polytope, reconstruction from [d/2]-skeleton      234a
Simplicial polytope, stability      69
Simplicial polytope, upper bound problem      172
Simplicial polytopes, density of the family of      81
Simplicial polytopes, number of      see “Number”
Simplicial sphere, centrally symmetric      see “Centrally symmetric”
Simplicial sphere, g-theorem      198b
Simplicial sphere, polytopality      121a
Simplicial sphere, upper bound theorem      171a 198a
Simplicial spheres, number of      see “Number”
Singular of degree s      269
Skeleton      138
Skeleton of a simplex      201 210
Skeleton, k-skeleton      138
Slack variable      96a
Snake-in-the-box code      382
Space-filling      411
Spanning tree      296
Sphere      5
Sphere, shellable      96b
Sphere, simplicial      see “Simplicial sphere”
Spheres, convexity on      10 30
Spherical arrangement      409
Spherical polytope, arrangements      392
Spherical polytope, Euler’s equation      142
Spherical polytope, incidence equations      145
Spherical simplex      306
Spherical space      7a
Spherically convex set      10 30
SPREAD      382
Stable equivalence      96a
Stacked polytope      198b
Standard Gale-diagram      109
Stanley — Reisner ring      198a 198c
Star      40
Star, k-star      138 301
Star-diagram      103
Star-diagram, simplicial polytopes      114
Steep $\varphi$-path      376
Steep height      376
Steepest edge pivot rule      389b
Steiner point      308 315a
Steiner point, history      313
Steiner point, translation classes      317
Steiner point, valuation property      315
Steinitz’s theorem on 3-polytopes      235 296a—296b
Steinitz’s theorem on 3-polytopes, analogue for 2-arrangements      409
Steinitz’s theorem on 3-polytopes, enumeration of 3-polytopes      92 290
Steinitz’s theorem on 3-polytopes, modifications      244
Steinitz’s theorem on 3-polytopes, projective uniqueness      68
Steinitz’s theorem on convex hulls      17
Straszewicz’ theorem      19
Stretchable arrangement      408
Strict $\varphi$-path      375
Strict height      376
Strictly antipodal subset of $R^{d}$      128 129b
Strong d-ambiguity      225 228
Strong monotone Hirsch conjecture      355b
Strongly isomorphic polytopes      52c
Strongly regular cell complex      see “Regular cell complex”
Subdivisions of complete graphs      224b
subspace      3
Subspace arrangements      410b
Summand of a polytope      316
Supporting function      13 326
Supporting hyperplane      10 13
Sweep      142a
Sylvester — Gallai theorem      410b
Sylvester’s problem      404 (see also “Sylvester — Gallai theorem”)
Symmetry of a polytope      120
Symmetry of a polytope, central      see “Centrally symmetric polytope”
Symmetry of a polytope, regular polytopes      412
Tarski’s procedure      96b
Tarski’s theorem      91
Threshold gate      121b
Tile type      423a
Tiling of $R^{d}$      423a
Topological complex, Euler characteristic      142
Topological complex, incidence equation      145
Topological complex, polyhedral, convex, geometric complex      39
Toric g-vector      198c
Toric h-vector      171b
Toric variety      52c
Toric variety and h-vector      171b
Toric variety and the g-theorem      171b
Toric variety, cohomology      198c
Toric variety, Morse function      142a
Torus      207 253
Totally positive matrix      129b
Totally separated      217
Totally separated, degree of total separability      217
Tower      37
Towers of Hanoi      383
Transformation, adjoint      50
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru Hosted by Parkline.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте