Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Grünbaum B. — Convex Polytopes
Grünbaum B. — Convex Polytopes



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Convex Polytopes

Автор: Grünbaum B.

Аннотация:

The appearance of Gruenbaum's book Convex Polytopes in 1967 was a moment of grace to geometers and combinatorialists. The special spirit of the book is very much alive even in those chapters where the book's immense influence made them quickly obsolete. Some other chapters promise beautiful unexplored land for future research. The appearance of the new edition is going to be another moment of grace. Kaibel, Klee and Ziegler were able to update the convex polytope saga in a clear, accurate, lively, and inspired way. —Gil Kalai, The Hebrew University of Jerusalem The original book of Gruenbaum has provided the central reference for work in this active area of mathematics for the past 35 years...I first consulted this book as a graduate student in 1967; yet, even today, I am surprised again and again by what I find there. It is an amazingly complete reference for work on this subject up to that time and continues to be a major influence on research to this day. —Louis J. Billera, Cornell University The original edition of Convex Polytopes inspired a whole generation of grateful workers in polytope theory. Without it, it is doubtful whether many of the subsequent advances in the subject would have been made. The many seeds it sowed have since grown into healthy trees, with vigorous branches and luxuriant foliage. It is good to see it in print once again. —Peter McMullen, University College LondonThe combinatorial study of convex polytopes is today an extremely active and healthy area of mathematical research, and the number and depth of its relationships to other parts of mathematics have grown astonishingly since Convex Polytopes was first published in 1966. The new edition contains the full text of the original and the addition of notes at the end of each chapter. The notes are intended to bridge the thirty five years of intensive research on polytopes that were to a large extent initiated, guided, motivated and fuelled by the first edition of Convex Polytopes. The new material provides a direct guide to more than 400 papers and books that have appeared since 1967. Branko Grünbaum is Professor of Mathematics at the University of Washington.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 2003

Количество страниц: 466

Добавлена в каталог: 30.06.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Hirsch conjecture for special polytopes      355a
Hirsch conjecture, $W_{\nu}$ paths      354
Hirsch conjecture, monotone      355b
Hirsch conjecture, strong monotone      355b
Homeomorphism, C-homeomorphism      210
Homogeneous coordinates      7a
Homogeneous function      13
Homogeneous metric space      415
Homogenization      see “Projective transformation”
Homothetic      1
Homothetic, positively      1 318
Hyperbolic space      7a
Hyperplane      2
Hyperplane arrangement      see “Arrangement”
Hyperplane arrangement, complex      410b
Hyperplane arrangement, number of regions      410b
Hyperplane arrangement, number of simplicial regions      410b
Hyperplane arrangement, simplicial      410b
Hyperplane arrangement, zonotopes      410a
Hyperplane arrangements, real, and oriented matroids      410a
Hyperplane at infinity      4
Hyperplane, Euler      see “Euler hyperplane”
Hyperplane, separating      10
Hyperplane, supporting      10
Hypersimplex      69a
icosahedron      215
Illuminating set      422
Illumination      423c
Improper face      17
incidence      143
Incidence equation      144 169
Incidence graph      216
Incidence system      171
Incident objects      143
Indecomposable lens      240 245
Indecomposable polytope      318 329
Indecomposable polytope, examples      323
Index of a 2 arrangement      394
Inner diagonal      423c
Inradius      423c
Inscribable type      285
Integer programming      69a
Interior of a set      6
Intersection property      142b
Intersectional basis      13
Intersectional family      3 13
Irredundant set of halfspaces      26
Isometry      252
Isomorphism of complexes      199
Isomorphism of Gale-diagrams      89
Isomorphism of Gale-transforms      89
Isomorphism of partially ordered sets      231
Isomorphism of polytopes      see “Combinatorial equivalence”
Isomorphism problem      52b
Isoperimetric problem      292 417
Javaview      xii
Jordan’s Theorem      142 231
k-content      423b
Keller’s problem      411 423a
Klee — Minty cube      389b
Kleetope      217
Kleetope, dimensional unambiguous graphs      227
Kleetope, f-vectors of centrally symmetric polytopes      169
Kleetope, Hamiltonian circuits      357
Kleetope, path-lengths      372
Kleetope, spanning trees      296
Knapsack polytope      121b
Kneser problem      129b
Kruemmungsschwerpunkt      see “Steiner point”
Kruskal’s theorem      179
LADDER      369
Lattice      21
Lattice polytope      52a
Lattice tiling      423a
Lattice, deciding polytopality      296d
Lattice, Eulerian      see “Eulerian lattice”
Lattice, face      50
Lattices, semilattices and abstract cell complexes      206
Lawrence construction      96a
Lens      239 245
Lens, indecomposable      240
LIMIT      5
Line      3
Line arrangement      410a
Line arrangement, number of triangles      410b
Line arrangement, projective plane      428c
Line shelling      142a
Line-free set      24
linear combination      2
Linear dependence      2
Linear hull      3
Linear hyperplane arrangement      69b
Linear program      see “Simplex algorithm”
Linear program, random      389b
Linear program, standard forms      96a
Linear programming      356
Linear programming, computer experience      381
Linear programming, duality      96a
Linear programming, paths on polytopes      342 347
Linear programming, simplex algorithm      356
Linear programming, standard form      381
Linear systems      337
Linked complex      40
Locally similar polytopes      52c
Lower bound conjecture      183 (see also “Lower bound theorem”)
Lower bound theorem for polytopes      198a
Lower bound theorem for simplicial manifolds      198a
Lower bound theorem, g-theorem      198b
Lower semicontinuity of $f_{k}(P)$      83
Lower semicontinuity of $f_{k}(\mathcal{A})$      393
Lower semicontinuity of $\zeta_{k}(P)$      416
lrs      52b
m-sequence      198a
Main theorem about polytopes      52a
Manifold      see “Eulerian manifold”
Markov chain      340b
Matching polytope      69a
McMullen’s conditions      198a
Mean Width      315
Mean width of a compact convex set      427
Measure polytope      56
Menger’s theorem      224b (see also “Whitney’s theorem”)
Merging of polytopes      373
Metric function      5
Metric space      5
Metric space, complete      6
Metric space, homogeneous      415
Minkowski sum      340a
Minkowski’s theorem      332 339
Misanthrope problem      296d
Mixed volume      324
Mixed volume, hardness of computing      340b
Mixed volume, randomized algorithm for computing      340c
Moebius function      142b
Moment curve      61
Moment curve, trigonometric      69b
Monotone Hirsch conjecture      355b
Morse function      142a
Multi-k-gon      272
Multi-k-valent      282
Multiplicity      86 109
Nash equilibrium      423c
Neighborly family of centrally symmetric polytopes      129b
Neighborly family of polytopes      128
Neighborly family of simplices      129b
Neighborly polytope      123 129a—129b
Neighborly polytope, centrally symmetric      116
Neighborly polytope, diameter      345
Neighborly polytope, f-vectors      162 174
Neighborly polytope, k-almost      126
Neighborly polytope, k-neighborly polytope      122
Neighborly polytope, simplicial      124
Neighborly polytopes, number of      see “Number”
Neighborly set      126
Non-rational      96a
Non-revisiting path conjecture      355a (see also “$W_{\nu}$-conjecture”)
Nonbasic gradient      378
Nonbasic variable      378
Normal fan of a polytope      52c
Normally equivalent polytopes      52c
Number of 2-arrangements      394
Number of 3-polytopes (asymptotically)      296c
Number of 3-polytopes with n edges      290
Number of d-polytopes with d+3 vertices      114 121a
Number of neighborly 4-poly topes      129a
Number of neighborly 6-polytopes      129a
Number of neighborly d-polytopes      129a 428c
Number of neighborly d-polytopes with d+3 vertices      121a
Number of neighborly simplicial d-polytopes with d+3 vertices      121a 428c
Number of simplicial 3-polytopes with p vertices      290
Number of simplicial d-polytopes with d+3 vertices      111 121a
Number of simplicial polytopes and spheres      121a
Objective function      347
Octahedron, 1-skeleton      216
Octahedron, d-octahedron      55
Octahedron, projection      72
Octahedron, regular polytopes      412
Open set      5
Optimization, combinatorial      see “Combinatorial optimization”
Optimization, convex      30b
Optimization, non-linear      30b
Oracle      52b
Oracle, computation of volume      340b
Order dimension      296d
Organic compounds      356 362
Orientation of a polytope graph      355b
Orientation of a polytope graph, induced by a linear function      296b
Oriented matroid      30b
Oriented matroid, arrangements      410a
Oriented matroid, compatible      96b
Oriented matroid, cyclic      see “Cyclic oriented matroid”
Oriented matroid, duality and Gale-diagrams      96a
Oriented matroid, equilibrated systems of vectors      340c
Oriented matroid, realizable      410a
Orthant      305
Orthogonal vectors      2
Outward normal      13
Packing      411
Parallelotope      56 335
Path code      382
Path in a graph      212
Path on a polyhedron      341
Path, $W_{\nu}$      354
Path, $\varphi$-path      375
Path, Hamiltonian      356
Path, length      366
Path, simple      356
Path, simplex $\varphi$-path      376
Path, steep $\varphi$-path      376
Path, strict $\varphi$-path      375
Path-length      366
Perles, M.A., angle-sums relations of simplicial polytopes      307
Perles, M.A., automorphisms and symmetries of d-polytopes with d+3 vertices      120
Perles, M.A., conjecture on facet subgraphs of simple polytopes      234a
Perles, M.A., d+3 points in general position      120
Perles, M.A., d-polytopes with d+3 vertices      121a
Perles, M.A., dimension of f-vectors of quasi-simplicial polytopes      153
Perles, M.A., Gale-diagrams      96a
Perles, M.A., Gale-transformation      85
Perles, M.A., neighborly families of simplices      129b
Perles, M.A., non-rational 8-polytope      94
Perles, M.A., number of d-polytopes with d+3 vertices      114
Perles, M.A., number of simplicial d-polytopes with d+3 vertices      111
Perles, M.A., polytopes with few vertices      108
Perles, M.A., projectively unique d-poly topes with d+3 vertices      120
Perles, M.A., rational realizations of d-polytopes with d+3 vertices      119
Perles, M.A., reconstruction of polytopes from (d-2)-skeleta      234a
Perles, M.A., reconstruction of simplicial polytopes from [d/2]-skeleta      234a
Perles, M.A., results on intersections of simplices and flats      74
Perles, M.A., solution of a problem of Klee’s      426
Permissible projective transformation      4
Perturbation      96b
Petrie arc      258 294
Piecewise affine mapping      41
Piecewise affine refinement map      205
Piecewise linear function      316 326
Piecewise projective mapping      41
Planar graph, 2-diagrams      244
Planar graph, 3-polytopes      235
Plane of symmetry      246
Platonic solids      296d 412
Point, exposed      see “Exposed point”
Point, extreme      see “Extreme point”
Pointed cone      24
Polar cone      49
Polar set      47
Polyhedral at a point      36
Polyhedral cell-complex      52c
Polyhedral combinatorics      69a
Polyhedral complex      51
Polyhedral computation      52b
Polyhedral set      26
Polyhedral set, bounded      32
Polyhedral set, face numbers      139
Polyhedral set, quasi-polyhedral set      36
Polyhedral sets, complex of      41
Polyhedron, class (d,n)      347
Polyhedron, diameter      347
Polyhedron, number of vertices      188 197
Polyhedron, paths      341
Polyhedron, simplex-algorithm      378
Polymake      xii 52b
Polynomial inequalities      52b
Polytope      31
Polytope algebra      340a
Polytope with d+3 vertices      121a
Polytope with d+4 vertices      96a
Polytope without triangle faces      198d
Polytope, 0/1-polytope      69a
Polytope, antipodal      420
Polytope, approximation      326
Polytope, centrally symmetric      see “Centrally symmetric polytope”
Polytope, coding size of coordinates      296d
Polytope, congruent-faced      414
Polytope, cubical      see “Cubical polytope”
Polytope, cyclic      see “Cyclic polytope”
Polytope, decomposable      see “Decomposable polytope”
Polytope, dual      46
Polytope, equifacetted      423a
Polytope, generalized regular      423a
Polytope, height      389b
Polytope, hyperbolic      7a
Polytope, indecomposable      see “Indecomposable polytope”
Polytope, infinite-dimensional      52
Polytope, inscribed in a sphere      296c
Polytope, neighborly      see “Neighborly polytope”
Polytope, prescribing shapes of faces      296d
Polytope, projectively unique      68
Polytope, pyramidal      see “Pyramidal polytope”
Polytope, quasi-simplicial      see “Quasi-simplicial polytope”
Polytope, quotient      129b
Polytope, random      129b
Polytope, rational      see “Rational polytope”
Polytope, reconstruction of the combinatorial structure      see “Reconstruction”
Polytope, regular      see “Regular polytope”
Polytope, regular-faced      414
Polytope, rigidity      129b
Polytope, rooted, oriented 3-polytope      289
Polytope, self-dual      52d
Polytope, semiregular      413 423a
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте