Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Beezer R.A. — A First Course in Linear Algebra
Beezer R.A. — A First Course in Linear Algebra



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: A First Course in Linear Algebra

Автор: Beezer R.A.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2008

Количество страниц: 938

Добавлена в каталог: 20.05.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
A (appendix)      699
A (archetype)      703
A (definition)      194
A (notation)      194
A (part)      845
AA (Property)      285
AA (subsection, section WILA)      4
AA (theorem)      194
AAC (Property)      90
AACN (Property)      680
AAF (Property)      789
AALC (example)      97
AAM (Property)      189
ABLC (example)      96
ABS (example)      117
AC (Property)      285
ACC (Property)      90
ACCN (Property)      680
ACF (Property)      789
ACM (Property)      189
ACN (example)      679
Additive associativity, column vectors, Property AAC      90
Additive associativity, complex numbers, Property AACN      680
Additive associativity, matrices, Property AAM      189
Additive Associativity, vectors, Property AA      285
Additive commutativity, complex numbers, Property CACN      680
Additive inverse, complex numbers, Property AICN      681
Additive inverse, from scalar multiplication, theorem AISM      293
Additive inverses, column vectors, Property AIC      90
Additive inverses, matrices, Property AIM      189
Additive inverses, unique, theorem AIU      292
Additive inverses, vectors, Property AI      286
Addtive closure, column vectors, Property ACC      90
Addtive closure, complex numbers, Property ACCN      680
Addtive closure, field, Property ACF      789
Addtive closure, matrices, Property ACM      189
Addtive closure, vectors, Property AC      285
Adjoint, definition A      194
Adjoint, inner product, theorem AIP      209
Adjoint, notation      194
Adjoint, of a matrix sum, theorem AMA      194
Adjoint, of an adjoint, theorem AA      194
Adjoint, of matrix scalar multiplication, theorem AMSM      194
AHSAC (example)      63
AI (Property)      286
AIC (Property)      90
AICN (Property)      681
AIF (Property)      790
AIM (Property)      189
AIP (theorem)      209
AISM (theorem)      293
AIU (theorem)      292
AIVLT (example)      513
ALT (example)      458
ALTMM (example)      551
AM (definition)      28
AM (example)      25
AM (notation)      28
AM (subsection, section MO)      193
AMA (theorem)      194
AMAA (example)      28
AME (definition)      411
AMSM (theorem)      194
ANILT (example)      514
ANM (example)      608
AOS (example)      177
Archetype A, augmented matrix, example AMAA      28
Archetype A, column space      244
Archetype A, linearly dependent columns      142
Archetype A, singular matrix      73
Archetype A, solving homogeneous system      64
Archetype A, system as linear combination      97
Archetype B, column space      244
Archetype B, inverse, example CMIAB      221
Archetype B, linearly independent columns      142
Archetype B, nonsingular matrix      74
Archetype B, not invertible, example MWIAA      216
Archetype B, solutions via inverse, example SABMI      215
Archetype B, solutions, example SAB      36
Archetype B, solving homogeneous system      63
Archetype B, system as linear combination      96
Archetype B, vector equality      88
Archetype C, homogeneous system      63
Archetype D, column space, original columns      243
Archetype D, solving homogeneous system      64
Archetype D, vector form of solutions      99
Archetype I, column space from row operations      250
Archetype I, null space      65
Archetype I, row space      246
Archetype I, vector form of solutions      106
Archetype L, casting out vectors      159
Archetype L, null space span, linearly independent      145
Archetype L, vector form of solutions      108
ASC (example)      540
Augmented matrix, notation      28
AVR (example)      323
B (archetype)      707
B (definition)      331
B (section)      331
B (subsection, section B)      331
Basis, columns nonsingular matrix, example CABAK      336
Basis, common size, theorem BIS      348
Basis, crazy vector apace, example BC      334
Basis, definition B      331
Basis, matrices, example BM      332
Basis, matrices, example BSM22      333
Basis, polynomials, example BP      332
Basis, polynomials, example BPR      360
Basis, polynomials, example BSP4      332
Basis, polynomials, example SVP4      361
Basis, subspace of matrices, example BDM22      361
BC (example)      334
BCS (theorem)      242
BDE (example)      426
BDM22 (example)      361
Best cities, money magazine, example MBC      200
BIS (theorem)      348
BM (example)      332
BNM (subsection, section B)      336
BNS (theorem)      144
BP (example)      332
BPR (example)      360
BRLT (example)      505
BRS (theorem)      248
BS (theorem)      162
BSCV (subsection, section B)      334
BSM22 (example)      333
BSP4 (example)      332
C (archetype)      712
C (definition)      684
C (notation)      684
C (part)      3
C (Property)      285
C (technique, section PT)      689
CABAK (example)      336
CACN (Property)      680
CAEHW (example)      406
CAF (Property)      789
Canonical form, nilpotent linear transformation, example CFNLT      626
Canonical form, nilpotent linear transformation, theorem CFNLT      622
CAV (subsection, section O)      171
Cayley — Hamilton, theorem CHT      667
CB (section)      577
CB (theorem)      578
CBCV (example)      582
CBM (definition)      578
CBM (subsection, section CB)      578
CBP (example)      579
CC (Property)      90
CCCV (definition)      171
CCCV (notation)      171
CCM (definition)      192
CCM (example)      192
CCM (notation)      192
CCM (theorem)      193
CCN (definition)      681
CCN (notation)      681
CCN (subsection, section CNO)      681
CCRA (theorem)      681
CCRM (theorem)      681
CCT (theorem)      682
CD (subsection, section DM)      381
CD (technique, section PT)      691
CEE (subsection, section EE)      407
CELT (example)      594
CELT (subsection, section CB)      589
CEMS6      413
CEMS6 (example)      413
CF (section)      845
CFDVS (theorem)      540
CFNLT (example)      626
CFNLT (subsection, section NLT)      622
CFNLT (theorem)      622
CFV (example)      56
Change of basis, between polynomials, example CBP      579
Change-of-basis matrix, definition CBM      578
Change-of-basis matrix, inverse, theorem ICBM      579
Change-of-basis, between column vectors, example CBCV      582
Change-of-basis, matrix representation, theorem MRCB      583
Change-of-basis, similarity, theorem SCB      586
Change-of-basis, theorem CB      578
Characteristic polynomial, definition CP      408
Characteristic polynomial, degree, theorem DCP      428
Characteristic polynomial, size 3 matrix, example CPMS3      408
CHT (subsection, section JCF)      667
CHT (theorem)      667
CILT (subsection, section ILT)      490
CILTI (theorem)      490
CIM (subsection, section MISLE)      217
CINM (theorem)      220
CIVLT (example)      517
CIVLT (theorem)      519
CLI (theorem)      541
CLTLT (theorem)      474
CM (definition)      26
CM (Property)      189
CM32 (example)      543
CMCN (Property)      680
CMF (Property)      789
CMI (example)      219
CMIAB (example)      221
CMVEI (theorem)      57
CN (appendix)      671
CNA (definition)      680
CNA (notation)      680
CNA (subsection, section CNO)      679
CNE (definition)      680
CNE (notation)      680
CNM (definition)      680
CNM (notation)      680
CNMB (theorem)      336
CNO (section)      679
CNS1 (example)      66
CNS2 (example)      66
CNSV (example)      175
COB (theorem)      337
Coefficient matrix, definition CM      26
Coefficient matrix, nonsingular, theorem SNCM      232
Column space, Archetype A, example CSAA      244
Column space, Archetype B, example CSAB      244
Column space, as null space, Archetype G, example FSAG      273
Column space, as null space, example CSANS      262
Column space, as null space, theorem FS      267
Column space, as row space, theorem CSRST      250
Column space, basis, theorem BCS      242
Column space, consistent system, theorem CSCS      240
Column space, consistent systems, example CSMCS      239
Column space, isomorphic to range      560
Column space, matrix      239
Column space, nonsingular matrix, theorem CSNM      245
Column space, notation      239
Column space, original columns, Archetype D, example CSOCD      243
Column space, row operations, Archetype I, example CSROI      250
Column space, subspace, theorem CSMS      309
Column space, testing membership, example MCSM      240
Column space, two Computations, example CSTW      242
Column vector addition, notation      88
Column vector scalar multiplication, notation      89
Commutativity, column vectors, Property CC      90
Commutativity, matrices, Property CM      189
Commutativity, vectors, Property C      285
Complex arithmetic, example ACN      679
Complex m-space, example VSCV      287
Complex number, conjugate, definition CCN      681
Complex number, conjugate, example CSCN      681
Complex number, modulus, definition MCN      682
Complex number, modulus, example MSCN      682
Complex numbers, addition, definition CNA      680
Complex numbers, addition, notation      680
Complex numbers, arithmetic properties, theorem PCNA      680
Complex numbers, equality, definition CNE      680
Complex numbers, equality, notation      680
Complex numbers, multiplication, definition CNM      680
Complex numbers, multiplication, notation      680
Complex vector space, dimension, theorem DCM      349
Composition, injective linear transformations, theorem CILTI      490
Composition, surjective linear transformations, theorem CSLTS      507
Conjugate of a vector, notation      171
Conjugate, addition, theorem CCRA      681
Conjugate, column vector, definition CCCV      171
Conjugate, matrix, definition CCM      192
Conjugate, matrix, notation      192
Conjugate, multiplication, theorem CCRM      681
Conjugate, notation      681
Conjugate, of conjugate of a matrix, theorem CCM      193
Conjugate, scalar multiplication, theorem CRSM      171
Conjugate, twice, theorem CCT      682
Conjugate, vector addition, theorem CRVA      171
Conjugation, matrix addition, theorem CRMA      192
Conjugation, matrix scalar multiplication, theorem CRMSM      193
Conjugation, matrix transpose, theorem MCT      193
Consistent linear system      54
Consistent linear systems, theorem CSR.N      55
Consistent system, definition CS      51
Constructive proofs, technique C      689
Contradiction, technique CD      691
Contrapositive, technique CP      691
Converse, technique CV      691
Coordinates, orthonormal basis, theorem COB      337
Coordinatization principle      543
Coordinatization, linear combination of matrices, example CM32      543
Coordinatization, linear independence, theorem CLI      541
Coordinatization, orthonormal basis, example CROB3      339
Coordinatization, orthonormal basis, example CROB4      338
Coordinatization, spanning sets, theorem CSS      541
Coordinatizing, polynomials, example CP2      542
COV (example)      159
COV (subsection, section LDS)      159
CP (definition)      408
CP (subsection, section VR)      541
CP (technique, section PT)      691
CP2 (example)      542
CPMS3 (example)      408
CPSM (theorem)      813
Crazy vector space, example CVSR      540
Crazy vector space, properties, example PCVS      293
CRMA (theorem)      192
CRMSM (theorem)      193
CRN (theorem)      351
CROB3 (example)      339
1 2 3 4 5 6 7 8 9 10
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте