Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Beezer R.A. — A First Course in Linear Algebra
Beezer R.A. — A First Course in Linear Algebra



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: A First Course in Linear Algebra

Автор: Beezer R.A.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2008

Количество страниц: 938

Добавлена в каталог: 20.05.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Notation, MSM      188
Notation, MVP      199
Notation, NOLT      521
Notation, NOM      350
Notation, NSM      65
Notation, NV      175
Notation, RLT      501
Notation, RO      29
Notation, ROLT      521
Notation, ROM      351
Notation, RREFA      31
Notation, RSM      246
Notation, SC      685
Notation, SE      684
Notation, SETM      683
Notation, SI      685
Notation, SM      379
Notation, SRM      840
Notation, SSET      683
Notation, SSV      117
Notation, SU      685
Notation, SUV      177
Notation, T      797
Notation, TM      190
Notation, VR      535
Notation, VSCV      87
Notation, VSM      187
Notation, ZCV      26
Notation, ZM      190
NPNT (theorem)      229
NRFO (subsection, section MR)      553
NRML (definition)      608
NRREF (example)      31
NS.MMA (computation, section MMA)      672
NSAO (example)      504
NSAQ (example)      497
NSAQR (example)      503
NSC2A (example)      302
NSC2S (example)      302
NSC2Z (example)      302
NSDAT (example)      507
NSDS (example)      124
NSE (example)      12
NSEAI (example)      65
NSLE (example)      27
NSLIL (example)      145
NSM (definition)      65
NSM (notation)      65
NSM (subsection, section HSE)      65
NSMS (theorem)      303
NSNM (example)      75
NSNM (subsection, section NM)      75
NSR (example)      75
NSS (example)      75
NSSLI (subsection, section LI)      143
Null space span, linearly independent, Archetype L, example NSLIL      145
Null space, Archetype I, example NSEAI      65
Null space, as a span, example NSDS      124
Null space, basis, theorem BNS      144
Null space, computation, example CNS1      66
Null space, computation, example CNS2      66
Null space, isomorphic to kernel      557
Null space, linearly independent basis, example LINSB      143
Null space, mathematica      672
Null space, matrix, definition NSM      65
Null space, nonsingular matrix      76
Null space, notation      65
Null space, singular matrix      75
Null space, spanning set, example SSNS      123
Null space, spanning set, theorem SSNS      122
Null space, subspace, theorem NSMS      303
Nullity, computing      351
Nullity, injective linear transformation, theorem NOILT      522
Nullity, linear transformation, definition NOLT      521
Nullity, matrix      351
Nullity, matrix, definition NOM      350
Nullity, notation      350 521
Nullity, square matrix      352
NV (definition)      175
NV (notation)      175
NVM (theorem)      811
O (archetype)      756
O (Property)      286
O (section)      171
OBC (subsection, section B)      337
OBNM (theorem)      611
OBUTR (theorem)      607
OC (Property)      90
OCN (Property)      681
OD (section)      603
OD (subsection, section OD)      608
OD (theorem)      609
OF (Property)      790
OLTTR (example)      547
OM (Property)      189
One, column vectors, Property OC      90
One, complex numbers, Property OCN      681
One, field, Property OF      790
One, matrices, Property OM      189
One, vectors, Property O      286
ONFV (example)      181
ONS (definition)      181
ONTV (example)      181
Orthogonal vectors, example TOV      176
Orthogonal, linear independence, theorem OSLI      178
Orthogonal, set of vectors, definition OSV      177
Orthogonal, set, example AOS      177
Orthogonal, vector pairs, definition OV      176
Orthonormal basis, normal matrix, theorem OBNM      611
Orthonormal diagonalization, theorem OD      609
Orthonormal set, four vectors, example ONFV      181
Orthonormal set, three vectors, example ONTV      181
Orthonormal, definition ONS      181
Orthonormal, matrix columns, example OSMC      234
OSGMD (example)      57
OSIS (theorem)      230
OSLI (theorem)      178
OSMC (example)      234
OSV (definition)      177
OV (definition)      176
OV (subsection, section O)      176
P (appendix)      679
P (archetype)      759
P (technique, section PT)      695
Particular solutions, example PSHS      110
PCNA (theorem)      680
PCVS (example)      293
PD (section)      359
PDM (section)      387
PDM (theorem)      841
PEE (section)      423
PEEF (theorem)      266
PI (definition)      469
PI (subsection, section LT)      469
PI (technique, section PT)      693
PIP (theorem)      176
PM (example)      403
PM (subsection, section EE)      403
PMI (subsection, section MISLE)      221
PMM (subsection, section MM)      204
PMR (subsection, section MR)      557
PNLT (subsection, section NLT)      618
POD (section)      841
Polar decomposition, theorem PDM      841
Polynomial vector space, dimension, theorem DP      349
Polynomial, of a matrix, example PM      403
Positive semi-definite matrix, definition PSM      813
Positive semi-definite matrix, eigenvalues, theorem EPSM      814
Positive semi-definite, creating, theorem CPSM      813
Practice, technique P      695
Pre-image, definition PI      469
Pre-image, kernel, theorem KPI      487
Pre-images, example SPIAS      470
Principal axis theorem      610
Product of triangular matrices, theorem PTMT      603
Property, AA      285
Property, AAC      90
Property, AACN      680
Property, AAF      789
Property, AAM      189
Property, AC      285
Property, ACC      90
Property, ACCN      680
Property, ACF      789
Property, ACM      189
Property, AI      286
Property, AIC      90
Property, AICN      681
Property, AIF      790
Property, AIM      189
Property, C      285
Property, CACN      680
Property, CAF      789
Property, CC      90
Property, CM      189
Property, CMCN      680
Property, CMF      789
Property, DCN      680
Property, DF      789
Property, DMAM      189
Property, DSA      286
Property, DSAC      90
Property, DSAM      189
Property, DVA      286
Property, DVAC      90
Property, MACN      680
Property, MAF      789
Property, MCCN      680
Property, MCF      789
Property, MICN      681
Property, MIF      790
Property, O      286
Property, OC      90
Property, OCN      681
Property, OF      790
Property, OM      189
Property, SC      285
Property, SCC      90
Property, SCM      189
Property, SMA      286
Property, SMAC      90
Property, SMAM      189
Property, Z      285
Property, ZC      90
Property, ZCN      680
Property, ZF      790
Property, ZM      189
PSHS (example)      110
PSHS (subsection, section LC)      109
PSM (definition)      813
PSM (section)      813
PSM (subsection, section PSM)      813
PSM (subsection, section SD)      438
PSMSR (theorem)      837
PSPHS (theorem)      109
PSS (subsection, section SSLE)      12
PSSD (theorem)      362
PSSLS (theorem)      56
PT (section)      687
PTFP (example)      845
PTM (example)      202
PTMEE (example)      204
PTMT (theorem)      603
Q (archetype)      761
R (acronyms, section JCF)      669
R (archetype)      764
R (chapter)      535
Range, full, example FRAN      502
Range, isomorphic to column space, theorem RCSI      560
Range, linear transformation, example RAO      501
Range, notation      501
Range, of a linear transformation, definition RLT      501
Range, pre-image, theorem RPI      506
Range, subspace, theorem RLTS      502
Range, surjective linear transformation, theorem RSLT      503
Range, via matrix representation, example RVMR      560
Rank one decomposition, size 2, example ROD2      819
Rank one decomposition, size 4, example ROD4      820
Rank one decomposition, theorem ROD      818
Rank, computing, theorem CRN      351
Rank, linear transformation, definition ROLT      521
Rank, matrix, definition ROM      351
Rank, matrix, example RNM      351
Rank, notation      351 521
Rank, nullity, theorem RPNC      352
Rank, of transpose, example RRTI      363
Rank, square matrix, example RNSM      352
Rank, surjective linear transformation, theorem ROSLT      522
Rank, transpose, theorem RMRT      363
RAO (example)      501
RCLS (theorem)      54
RCSI (theorem)      560
RD (subsection, section VS)      294
RDS (theorem)      369
READ (subsection, section B)      341
READ (subsection, section CB)      596
READ (subsection, section CRS)      251
READ (subsection, section D)      353
READ (subsection, section DM)      384
READ (subsection, section EE)      417
READ (subsection, section FS)      275
READ (subsection, section HSE)      67
READ (subsection, section ILT)      491
READ (subsection, section IVLT)      526
READ (subsection, section LC)      111
READ (subsection, section LDS)      165
READ (subsection, section LI)      146
READ (subsection, section LISS)      324
READ (subsection, section LT)      475
READ (subsection, section MINM)      235
READ (subsection, section MISLE)      224
READ (subsection, section MM)      210
READ (subsection, section MO)      195
READ (subsection, section MR)      565
READ (subsection, section NM)      77
READ (subsection, section O)      182
READ (subsection, section PD)      369
READ (subsection, section PDM)      395
READ (subsection, section PEE)      432
READ (subsection, section RREF)      40
READ (subsection, section S)      310
READ (subsection, section SD)      449
READ (subsection, section SLT)      508
READ (subsection, section SS)      126
READ (subsection, section SSLE)      18
READ (subsection, section TSS)      58
READ (subsection, section VO)      91
READ (subsection, section VR)      543
READ (subsection, section VS)      294
READ (subsection, section WILA)      7
Reduced row-echelon form, analysis, notation      31
Reduced row-echelon form, definition RREF      30
Reduced row-echelon form, example NRREF      31
Reduced row-echelon form, example RREF      31
Reduced row-echelon form, extended, definition EEF      264
Reduced row-echelon form, notation, example RREFN      51
Reduced row-echelon form, unique, theorem RREFU      33
Reducing a span, example RSC5      158
Relation of linear dependence, definition RLD      315
Relation of linear dependence, definition RLDCV      137
1 2 3 4 5 6 7 8 9 10
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте