|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Beezer R.A. — A First Course in Linear Algebra |
|
|
Предметный указатель |
Notation, MSM 188
Notation, MVP 199
Notation, NOLT 521
Notation, NOM 350
Notation, NSM 65
Notation, NV 175
Notation, RLT 501
Notation, RO 29
Notation, ROLT 521
Notation, ROM 351
Notation, RREFA 31
Notation, RSM 246
Notation, SC 685
Notation, SE 684
Notation, SETM 683
Notation, SI 685
Notation, SM 379
Notation, SRM 840
Notation, SSET 683
Notation, SSV 117
Notation, SU 685
Notation, SUV 177
Notation, T 797
Notation, TM 190
Notation, VR 535
Notation, VSCV 87
Notation, VSM 187
Notation, ZCV 26
Notation, ZM 190
NPNT (theorem) 229
NRFO (subsection, section MR) 553
NRML (definition) 608
NRREF (example) 31
NS.MMA (computation, section MMA) 672
NSAO (example) 504
NSAQ (example) 497
NSAQR (example) 503
NSC2A (example) 302
NSC2S (example) 302
NSC2Z (example) 302
NSDAT (example) 507
NSDS (example) 124
NSE (example) 12
NSEAI (example) 65
NSLE (example) 27
NSLIL (example) 145
NSM (definition) 65
NSM (notation) 65
NSM (subsection, section HSE) 65
NSMS (theorem) 303
NSNM (example) 75
NSNM (subsection, section NM) 75
NSR (example) 75
NSS (example) 75
NSSLI (subsection, section LI) 143
Null space span, linearly independent, Archetype L, example NSLIL 145
Null space, Archetype I, example NSEAI 65
Null space, as a span, example NSDS 124
Null space, basis, theorem BNS 144
Null space, computation, example CNS1 66
Null space, computation, example CNS2 66
Null space, isomorphic to kernel 557
Null space, linearly independent basis, example LINSB 143
Null space, mathematica 672
Null space, matrix, definition NSM 65
Null space, nonsingular matrix 76
Null space, notation 65
Null space, singular matrix 75
Null space, spanning set, example SSNS 123
Null space, spanning set, theorem SSNS 122
Null space, subspace, theorem NSMS 303
Nullity, computing 351
Nullity, injective linear transformation, theorem NOILT 522
Nullity, linear transformation, definition NOLT 521
Nullity, matrix 351
Nullity, matrix, definition NOM 350
Nullity, notation 350 521
Nullity, square matrix 352
NV (definition) 175
NV (notation) 175
NVM (theorem) 811
O (archetype) 756
O (Property) 286
O (section) 171
OBC (subsection, section B) 337
OBNM (theorem) 611
OBUTR (theorem) 607
OC (Property) 90
OCN (Property) 681
OD (section) 603
OD (subsection, section OD) 608
OD (theorem) 609
OF (Property) 790
OLTTR (example) 547
OM (Property) 189
One, column vectors, Property OC 90
One, complex numbers, Property OCN 681
One, field, Property OF 790
One, matrices, Property OM 189
One, vectors, Property O 286
ONFV (example) 181
ONS (definition) 181
ONTV (example) 181
Orthogonal vectors, example TOV 176
Orthogonal, linear independence, theorem OSLI 178
Orthogonal, set of vectors, definition OSV 177
Orthogonal, set, example AOS 177
Orthogonal, vector pairs, definition OV 176
Orthonormal basis, normal matrix, theorem OBNM 611
Orthonormal diagonalization, theorem OD 609
Orthonormal set, four vectors, example ONFV 181
Orthonormal set, three vectors, example ONTV 181
Orthonormal, definition ONS 181
Orthonormal, matrix columns, example OSMC 234
OSGMD (example) 57
OSIS (theorem) 230
OSLI (theorem) 178
OSMC (example) 234
OSV (definition) 177
OV (definition) 176
OV (subsection, section O) 176
P (appendix) 679
P (archetype) 759
P (technique, section PT) 695
Particular solutions, example PSHS 110
PCNA (theorem) 680
PCVS (example) 293
PD (section) 359
PDM (section) 387
PDM (theorem) 841
PEE (section) 423
PEEF (theorem) 266
PI (definition) 469
PI (subsection, section LT) 469
PI (technique, section PT) 693
PIP (theorem) 176
PM (example) 403
PM (subsection, section EE) 403
PMI (subsection, section MISLE) 221
PMM (subsection, section MM) 204
PMR (subsection, section MR) 557
PNLT (subsection, section NLT) 618
POD (section) 841
Polar decomposition, theorem PDM 841
Polynomial vector space, dimension, theorem DP 349
Polynomial, of a matrix, example PM 403
Positive semi-definite matrix, definition PSM 813
Positive semi-definite matrix, eigenvalues, theorem EPSM 814
Positive semi-definite, creating, theorem CPSM 813
Practice, technique P 695
| Pre-image, definition PI 469
Pre-image, kernel, theorem KPI 487
Pre-images, example SPIAS 470
Principal axis theorem 610
Product of triangular matrices, theorem PTMT 603
Property, AA 285
Property, AAC 90
Property, AACN 680
Property, AAF 789
Property, AAM 189
Property, AC 285
Property, ACC 90
Property, ACCN 680
Property, ACF 789
Property, ACM 189
Property, AI 286
Property, AIC 90
Property, AICN 681
Property, AIF 790
Property, AIM 189
Property, C 285
Property, CACN 680
Property, CAF 789
Property, CC 90
Property, CM 189
Property, CMCN 680
Property, CMF 789
Property, DCN 680
Property, DF 789
Property, DMAM 189
Property, DSA 286
Property, DSAC 90
Property, DSAM 189
Property, DVA 286
Property, DVAC 90
Property, MACN 680
Property, MAF 789
Property, MCCN 680
Property, MCF 789
Property, MICN 681
Property, MIF 790
Property, O 286
Property, OC 90
Property, OCN 681
Property, OF 790
Property, OM 189
Property, SC 285
Property, SCC 90
Property, SCM 189
Property, SMA 286
Property, SMAC 90
Property, SMAM 189
Property, Z 285
Property, ZC 90
Property, ZCN 680
Property, ZF 790
Property, ZM 189
PSHS (example) 110
PSHS (subsection, section LC) 109
PSM (definition) 813
PSM (section) 813
PSM (subsection, section PSM) 813
PSM (subsection, section SD) 438
PSMSR (theorem) 837
PSPHS (theorem) 109
PSS (subsection, section SSLE) 12
PSSD (theorem) 362
PSSLS (theorem) 56
PT (section) 687
PTFP (example) 845
PTM (example) 202
PTMEE (example) 204
PTMT (theorem) 603
Q (archetype) 761
R (acronyms, section JCF) 669
R (archetype) 764
R (chapter) 535
Range, full, example FRAN 502
Range, isomorphic to column space, theorem RCSI 560
Range, linear transformation, example RAO 501
Range, notation 501
Range, of a linear transformation, definition RLT 501
Range, pre-image, theorem RPI 506
Range, subspace, theorem RLTS 502
Range, surjective linear transformation, theorem RSLT 503
Range, via matrix representation, example RVMR 560
Rank one decomposition, size 2, example ROD2 819
Rank one decomposition, size 4, example ROD4 820
Rank one decomposition, theorem ROD 818
Rank, computing, theorem CRN 351
Rank, linear transformation, definition ROLT 521
Rank, matrix, definition ROM 351
Rank, matrix, example RNM 351
Rank, notation 351 521
Rank, nullity, theorem RPNC 352
Rank, of transpose, example RRTI 363
Rank, square matrix, example RNSM 352
Rank, surjective linear transformation, theorem ROSLT 522
Rank, transpose, theorem RMRT 363
RAO (example) 501
RCLS (theorem) 54
RCSI (theorem) 560
RD (subsection, section VS) 294
RDS (theorem) 369
READ (subsection, section B) 341
READ (subsection, section CB) 596
READ (subsection, section CRS) 251
READ (subsection, section D) 353
READ (subsection, section DM) 384
READ (subsection, section EE) 417
READ (subsection, section FS) 275
READ (subsection, section HSE) 67
READ (subsection, section ILT) 491
READ (subsection, section IVLT) 526
READ (subsection, section LC) 111
READ (subsection, section LDS) 165
READ (subsection, section LI) 146
READ (subsection, section LISS) 324
READ (subsection, section LT) 475
READ (subsection, section MINM) 235
READ (subsection, section MISLE) 224
READ (subsection, section MM) 210
READ (subsection, section MO) 195
READ (subsection, section MR) 565
READ (subsection, section NM) 77
READ (subsection, section O) 182
READ (subsection, section PD) 369
READ (subsection, section PDM) 395
READ (subsection, section PEE) 432
READ (subsection, section RREF) 40
READ (subsection, section S) 310
READ (subsection, section SD) 449
READ (subsection, section SLT) 508
READ (subsection, section SS) 126
READ (subsection, section SSLE) 18
READ (subsection, section TSS) 58
READ (subsection, section VO) 91
READ (subsection, section VR) 543
READ (subsection, section VS) 294
READ (subsection, section WILA) 7
Reduced row-echelon form, analysis, notation 31
Reduced row-echelon form, definition RREF 30
Reduced row-echelon form, example NRREF 31
Reduced row-echelon form, example RREF 31
Reduced row-echelon form, extended, definition EEF 264
Reduced row-echelon form, notation, example RREFN 51
Reduced row-echelon form, unique, theorem RREFU 33
Reducing a span, example RSC5 158
Relation of linear dependence, definition RLD 315
Relation of linear dependence, definition RLDCV 137
|
|
|
Реклама |
|
|
|
|
|
|