Авторизация
Поиск по указателям
Rockmore D. — Stalking the Riemann Hypothesis
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Stalking the Riemann Hypothesis
Автор: Rockmore D.
Аннотация: In 1859 a German professor named Bernhard Riemann postulated a law capable of describing with an amazing degree of accuracy the baffling occurrence of prime numbers; coming up with its proof has been the holy grail of mathematicians ever since. In 'Stalking the Riemann Hypothesis, Dan Rockmore, a prominent mathematician in his own right, takes us from Euclid's pondering of the infinitude of the primes through modern efforts to prove the Riemann hypothesis-efforts that astonishingly connect the primes to the statistics of solitaire, chaos theory, and even the mysteries of quantum mechanics. Along the way, he introduces us to the many brilliant and fascinating thinkers who have contributed to this work, from the most famous mathematician of all time, Carl Friedrich Gauss (Riemann's teacher), to the intellectual giants David Hilbert and Freeman Dyson.
A lively, comprehensive, and accessible examination of one of the most compelling unsolved problems in mathematics, 'Stalking the Riemann Hypothesis tells us the full story of the quest to find that elusive solution.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2006
Количество страниц: 292
Добавлена в каталог: 11.03.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Schwartz, Laurent 141
Schwingcr, Julian 163 171 237
Scientific American 221
Selberg trace formula 209—211
Selberg zeta function 210—221
Selberg, Atle 141 142 143 147 155 216 217 231 263
Selberg, existence proof of 151
Semiclassical limit 186—231
Semiclassical limit, Berry and 188—189
Semiclassical limit, billiard table analogy see “Billiard tables for physicists”
Semiclassical limit, correspondence principle and 187
Semiclassical limit, Hamiltonian matrix and 227—228
Semiclassical limit, life at the 187—188
Semiclassical limit, quantization and 196—200
Semiclassical limit, quantum chaos and 187—190
Semiclassical limit, trace formula and 198
Seminaire Bourbaki 144—145
Sensitive dependence on initial conditions 189—190 198
Sensitive dependence on initial conditions, chaotic dynamical systems and 194—195 208
SETI project 266
Seven bridges of Konigsberg, puzzle of 48—49
Shepp, L. 255
Siegel, Carl Ludwig 64—65 155
Siegel, described 140—141
Siegel, Rademachcr and 147
Siegel, Riemann — Siegel formula and 139—140
Simon, Barry 242
Sinai's table 194 195 198 200
Sinai, Yakov 195
Sine function 160—162 164
Single-valued functions 147
Sinusoids 83
Skewes number 133—134 150 213
Skewes, S. 133
Snaith, Nina 226 262
Sncll, Laurie 234
Snow, C.R 162
Society of Industrial and Applied Mathematics 260
Solitaire 250 253—259
Sorting 248—259
Sound waves 85—86
Spacing distribution 182—184 197—198
Spacing distribution, bulk spectrum 232
Spacings 182
Special functions 238
Spectral geometry 216—227
Spectral lines 172—173
Spectral theory 214
Spectrum, atomic 172
Specular reflection 191
Spin assignment 238—239
Spin states 238—239
Square numbers 10—11
Square pulse 160—161
Square-free numbers 97—99
standing waves 196—197 216
Stanfotd University 177 214 215 221 224 257
Stark, Harold 211
State University of New York at Stony Brook 233
Statistical mechanics 137
Statistical physics 173—175 233
Steepest descent 244
Stieltjes, claimed proof of the Rcimann hypothesis and 95—99
Stieltjes, Thomas 104—105 107 175 177 181 259
Stock market unpredictability 100 102—103
Stoppard, Tom 50
String theory 230
Stuyvesant High School 234
Superposition 83 85 176
Svnehronicity 225
Symplectic matrices 219
Tabor, Michael 197—198 208
Tacoma Narrows bridge 148
Tao, Terrence 265
Taylor, Richard 148
te Riele, Herman 181
Tel Aviv University 218
Teller, Edward 249
tests of significance 226
TeX 257
Theorems 49—51 217
Theoretical computer science 149
Theories 49—50 217
Theory of Numbers (Legendre) 37 66
Theory of Numbers, Fir (Hardy and Wright) 162
Thomas Stieltjes Institute for Mathematics 96
Time 149
Time-limited phenomena 160—161
Time-reversal symmetry 227
Titchmarsh, E.C. 140
Tomonaga, S.-I. 171 237
topology 48—49
Trace formula 198 200
Trace formula, Selberg 209—211
Traces 198
Tracy — Widom distributions 234—241
Tracy — Widom distributions, Deift and 240—246
Tracy, Craig 233—235 260 262
Tracy, described 233—234
Tracy, Ising model and 238—239
Transactions of the American Mathematical Society 148—149
Transcendental numbers 71—72
Transfinite numbers 22—23
Transformation 165—170 229
Transformation, Frobcnius 220
Triangular numbers 11
Trinity College 170
Trivial zeta zeros 88—92
Turing Award 150 253 257
Turing machine 149—151
Turing Test 149—151
Turing, Alan 149—152
Twin Prime Conjecture 265
Twin primes 23—24
Ulam distance 252
Ulam's problem 255—256
Ulam, algorithms and 250—253
Ulam, atomic bomb and 249—250 255
Ulam, described 249
Ulam, Stanislaw 249—253
Uncertainty principle 135 187—188
Unitary matrices 219
University of Arizona 197
University of Birmingham 257
University of Cairo 82
University of California, Berkeley 264
University of California, Davis 234 258
University of California, Los Angeles (UCLA) 265
University of California, Santa Cruz 234
University of Chicago 234
University of Gottingcn 4 59 62 65 66 84 121 122 179
University of Leiden 96
University of Michigan 156 257
University of Pennsylvania 147 148—149
University of Toulouse 96
Update law 239
Vandcrbilt University 265
Veblen, Oswald 155
Vernon, Dale 223
Vershik, A 255
Volkov, A.F. 228
von Koch, Niels 126—127
von Mangoldt, Hans 130 157
von Neumann, John 155 229 249
von Sterneck, R. Daublebsky 103—104 120 259
Wave function 171—172 176—179 216—227
Waves 83—87
Waves, atomic nuclei and 171—172 176—179
Waves, Fourier analysis of 160—161 178
Waves, standing 196—197
Weber's law 34
Wedeniwski, Sebastian 261 266
Weil, Andre 143—147 155
Weil, described 142 144 145
Weil, Eveline 144
Weil, function fields and 143 145—147 220
Weil, Riemann hypothesis and 145—146
Weil, Seminaire Bourbaki and 144—145
Weil, Simonc 144
Wesscl, Caspar 74—75
Weyl, Hermann 146
Widom, described 234
Widom, Harold 233 235 260
Widom, Tracy — Widom distributions 234—246
Wigner, Eugene 174 177
Wiles, Andrew 114 148 261—262
William of Occam 221
Williams, David 152
World War II 140—142 145 149 150 162—163 249
Wright, Wilbur 238
Yohe, J.M. 151
Young tableaux 256 258
Young, Alfred E. 256
Zagier, Don 24
Zeno 53 55 57 58
Zero 3—4 71
Zero, zeta see “Zeta zeros”
zeros and ones 16
Zeta zeros 4 86—88 116 see
Zeta zeros, computing for 266
Zeta zeros, eigenvalues and 175—185 199—200 210—221 220 225—229 232
Zeta zeros, height or level of 90—91
Zeta zeros, L-series and 110
Zeta zeros, nontrivial 89—92 120
Zeta zeros, quantum chaos and 199
Zeta zeros, random ness of 157—160
Zeta zeros, Riemann hypothesis and 5 88—94
Zeta zeros, trivial 88—92
Zeta-function computer 150
ZetaGrid project 266
Zhou, Xin 243 260
Реклама