Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Rockmore D. — Stalking the Riemann Hypothesis
Rockmore D. — Stalking the Riemann Hypothesis



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Stalking the Riemann Hypothesis

Àâòîð: Rockmore D.

Àííîòàöèÿ:

In 1859 a German professor named Bernhard Riemann postulated a law capable of describing with an amazing degree of accuracy the baffling occurrence of prime numbers; coming up with its proof has been the holy grail of mathematicians ever since. In 'Stalking the Riemann Hypothesis, Dan Rockmore, a prominent mathematician in his own right, takes us from Euclid's pondering of the infinitude of the primes through modern efforts to prove the Riemann hypothesis-efforts that astonishingly connect the primes to the statistics of solitaire, chaos theory, and even the mysteries of quantum mechanics. Along the way, he introduces us to the many brilliant and fascinating thinkers who have contributed to this work, from the most famous mathematician of all time, Carl Friedrich Gauss (Riemann's teacher), to the intellectual giants David Hilbert and Freeman Dyson.
A lively, comprehensive, and accessible examination of one of the most compelling unsolved problems in mathematics, 'Stalking the Riemann Hypothesis tells us the full story of the quest to find that elusive solution.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2006

Êîëè÷åñòâî ñòðàíèö: 292

Äîáàâëåíà â êàòàëîã: 11.03.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Euler — Galcrkin methods      47
Euler's identity      79
Euler, described      47—49
Euler, infinity of primes and      59—62 142
Euler, Jacob      47
Euler, Leonhard      97 122 251
Euler, nicknames of      47 49
Euler, prime distribution analyzer of      77 81
Euler, Riemann      45 66 73 76—77
Euler, series of reciprocals of primes and      51—56 143
Evolution      63
Existence proof      151
Explicit formula (for counting the primes)      85—87
EXPONENT      33
Exponent, complex      78—81
Exponential growth      32—35
Extended Riemann hypothesis      219
Extrasensory perception      225
Factorials      251
Factors      229
Fast Fourier transform (FFT)      39
Fcvnman, Richard      163 171 237 249
Feller, William      223—224
Fermat's last theorem      95 114—125 125 148 262
Feynman diagrams      163
Fields medal      155 202 209 215 220 229
Fields Medal, described      141 142
Fields, J.C.      141
Figuratc numbers      11
Finite fields      145—146
Fisher, Sir R.A.      226
Floyd's game      253
Floyd, Robert      253
Forcing      215
Foundations of Geometry (Hilbert)      123
Four scalar potential      228
Fourier analysis      69 81—85 160 215
Fourier series      83—84
Fourier transform      83 178 184—185
Fourier, described      82
Fourier, Jean — Baptiste — Joseph      81—85
Fractals      126
French Academy of Sciences      95
French Academy of Sciences, Grand Prize competition of      99 105—106
Frequency content      110
Frequency of waves      83—87
Frobenius transformation      220
Frobenius, Georg      220
Function      80
Function fields      143 145—147 220
Fundamental Theorem of Arithmetic      14
Gambier, B.      238
Gardner, Martin      221 224
Gaudin distribution      183 198 199
Gaudin, Michel      175 183 234
Gauss, Carl Friedrich      29 47 59 115 122 209
Gauss, described      30—31 38—39
Gauss, discovery of fast Fourier transform (FFT)      39
Gauss, discovery of non-Euclidean geometry      203—204
Gauss, Enclce and      40—41
Gauss, integers and      110—125
Gauss, Legendre and      38-44 93
Gauss, nickname of      38
Gauss, prime numbers and      39—44 69 106 119 120 126 132—133 137 141 185
Gauss, relative error and      126—127
Gauss, Riemann and      75—79
Gaussian integers      110—125
Gaussian primes      112—123
Gell — Mann, Murray      49—50
Geodesies      203—207
Geometric situs      48
Geometry      10—11 48
Geometry, algebraic      see “Algebraic geometry”
Geometry, differential      39
Geometry, elliptic      204—205
Geometry, Euclidean      13 68 203—204
Geometry, hyperbolic      200—202 205—212
Geometry, non-Euclidean      39 66—67 200—209
Geometry, noncom mutative      230
Geometry, Riemannian      66—69
Geometry, spectral      216—227
Georgia Institute of Technology      195
Giannoni, Marie — Joya      198 222
Gledhill, Joseph      242
Global triangle      204
Godel, Kurt      135—136 142 154
GOE spacing distribution      198
Goodwill Hunting      50
Gram, J.      128—129
Grand unified theory      231 233
Grand Unified Theory, gravity and      237
Grand Unitary Ensemble (GUE)      219
Grand Unitary Ensemble (GUE), spacing distribution      183 198 199 220
Graph      49
Graph theory      49
Gravity      46 48
Gravity, quantum      236—237
Great circles      204—205
Green, Ben      265
Group representation theory      220
Group theory      223
Gutzwiller, Martin      198 200 209
Guy, R.      134
Haas, H.      211 212 213
Hadamard, described      105—106 140—141
Hadamard, Jacques      105—110 200 208 237 265
Hadamard, Prime Number Theorem and      106—107 129
Hadamard, Riemann's zeta function and      107—110 119
Hamilton, William Rowan      170
Hamiltonians      170—177
Hamiltonians, atomic nucleus and      171—175
Hamiltonians, eigenvalues and eigenvectors      175—177
Hamiltonians, Hermitian symmetry of      175—177 198—200
Hamiltonians, proof of Riemann hypothesis and      227—228
Hardy, described      129—130
Hardy, G.H.      65 162 163
Hardy, infinite number of zeta zeros and      130—134 141 143
Harish — Chandra      163
Harmonic analysis      215 216
harmonic oscillator      228
Harmonic scries      53—61 87
Harvard University      211 224 233
Hawking, Stephen      68
Hawkins prime      151—152
Hawkins, David      151—152 153
Heat      81—82
Heat equation      82
Heat, flow of      82—84 160
Height (of a zeta zero)      90—91
Heisenbcrg, Werner      135 179 187
Hejhal, Dennis      211 224 263
Heller, Eric      194h
Hermite, Charles      96 98—99 105—106 175
Hermitian symmctry      175—177 183 198—200
Hexagonal numbers      11
Hilbert space      171—172 179 218
Hilbert(Rmd)      179 260n
Hilbert, David      121—125 172 177
Hilbert, described      121—122
Hilbert, invariant theory of      122—123
Hilbert, Polya — Hilbert approach      179—180 185 198—199 227 232
How to Solve It (Polya)      177—178 185
Hyperbolic geometry      200—202 205—212
Hyperbolic triangles      208
Hypothesis testing      226
i      73 78—79
IBM      198
Ideal number      115—126
Ignoramibus      125 134
Imaginary axis      74
imaginary numbers      72
Imaginary numbers, purely      74
Imaginary part of complex numbers      73 74
Imaginary Tale, An (Nahin)      72
Indian Institute ofTechnology      264
Induction and Analogy in Mathematics (Polya)      177
Infinite prime      229
Infinite series      49 52—53
Infinite series, harmonic      53—61 87
infinity      18—29
Infinity, as a highly textured and nuanced notion      21—29
Infinity, defined      18
Infinity, Greeks and      51 53 70
Infinity, of primes      18—20 21 51 59—62
Infinity, transfinite number      22—23
Institute for Advanced Study      136 154—164
Institute for Advanced Study, described      154—156
Institute for Advanced Study, faculty at      140 142 147 154—155 162
Institute for Advanced Study, visiting members at      155—156 249
Integers      9 110—121
Integers, gaussian      110—125
Integrable systems      190—193 198
Integrable systems, Deift and      243
Integral form (of Riemanns zeta function)      80—81 129
Integration      42
International Congress of Mathematics (ICM)      121—125
International Congress of Mathematics (ICM), Fields Medal and      142
Internet      16 265—266
Internet, credit card transactions on      16—18
Internet, graphs and      49
Introduction to Infinitesimal Analysis (Euler)      66
Introduction to Probability and Its Applications, An (Feller)      223—224
Invariant theory      122—123
Irrational numbers      70
Ising model      238—239
Ising, Ernst      238—239
Jaffe, Arthur      233
Jimbo, M.      237 239—240
Johansson, Kurt      233 245
Johansson, mathematics of permutations and      245 255—260
Journal of the Indian mathematical society      209—210
Jung, Carl      225
Kaplansky, Irving      234
Katz, described      220
Katz, Nick      219—221 262
Kayal, Neeraj      264
Keating, Jonathan      226 227 228 262
Kendall, M.G.      102
Kepler, Johannes      46 47
Kerov, S.      255
Knuth, Donald E.      257
Kostelec, P.      181n 184n 192n 193n 195n 201n 205n 208n
Kronecker, Leopold      7 8 70 111 137 220
Kummcr, Eduard      115
Kyoto Prize      257
Lacroix, Sylvestre      83
Lagrange, Joseph — Louis      83
Landau, Edmund      130 142
Laplace, Pierre — Simon      47 83
Lavoisier, Antoine — Laurcnt      49
Lcgendre, Adricn — Marie      29 47 61 66
Lcgendre, death of      38
Lcgendre, described      30—32
Lcgendre, Gauss and      38—44 93
Lcgendre, Prime Number Theories and      35—38 69 106
Lcvinson, Norman      151
Lcwitt, Sol      256
Legendre functions      31
Lehman, R, Sherman      151
Lenstra, Hendrik      264
Levy, Silvio      206n
Ley, Jos      206n
Line      204n
Line, straight      203—207
Linear transformation      169
Littlewood, J.E.      131—132 141 143
Logan, B.      255
Logarithm      32
Logarithm, natural      34—35
Logarithm, reciprocals of      41—42
Logarithmic growth      32—35
Logarithmic growth, decibel system and      34
Logarithmic growth, Richter scale and      33—34
Logarithmic integral      42
Long Term Capital Management      102
Los Alamos      249 265
Luiliard School      221
MacArthur,"Genius" Fellowship      224
magic      221—225
Maginot Line      238
Malkiel, Burton      102
Maor, Eli      54n
Mathematical chaos      189—190
Mathematics      8
Mathematics, "unreasonable effectiveness of"      174
Mathematics, brevity of proof and      50—51
Mathematics, collaboration in      218
Mathematics, combinatorics      223
Mathematics, discrete      223
Mathematics, either-or nature of      134—136
Mathematics, infinity and      21
Mathematics, magic and      223
Mathematics, mathematicians      217
Mathematics, Pythagoras and      10
Mathematics, shoulders of giants and      46—62
Mathematics, theorems and      49—51
Matrices      164—185
Matrices, diagonal      167
Matrices, eigenvalues and eigenvectors      175—177
Matrices, examples of      165
Matrices, Hamiltonian      see “Hamiltonians”
Matrices, Hermitian      175—177 183
Matrices, multiplication and      169n
Matrices, orthogonal      219
Matrices, random      see “Random matrices”
Matrices, svmmetric      168
Matrices, symplectic      219
Matrices, transformative effects of      165—170
Matrices, unitary      219
Matter and energy      21
Mchta, Madan Lai      175 218 234 239 244 245
Mcndcleycv, Dmitry      108
Mcrtens, F.      104
Memoryless process      158
Mendelssohn, Rebecca      59
Mertens conjecture      104 181
Merton, Robert      102
METAFONT      257
Method of least squares      31 38 39 40
Metropolis, Nicholas      249 250
Millennium meeting      3—6 261—263
Millennium Prize Problems      6
Miller, Arthur      134—135
Milton, John      48
MIT      211 242
Mittag — Leffler, Goesta      141
Miwa, T.      237 239—240
Moebius band (Moebius strip)      97
Moebius inversion formula      97—105 177 181 259
Moebius, A.R.      97
Monge, Gaspard      83
Monte Carlo technique      250 253
Montgomery, described      156—157
Montgomery, Dyson and      154 162 164 180
Montgomery, Dyson — Monrgomcry — Odfyzko Law      180—185
Montgomery, Hugh      219 263
Montgomery, pair correlation and      157—160
Montgomery, sinc function and      161—162
Mori, Y.      237 239—240
Moser, Juergen      243
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå