Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Rockmore D. — Stalking the Riemann Hypothesis
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Stalking the Riemann Hypothesis
Àâòîð: Rockmore D.
Àííîòàöèÿ: In 1859 a German professor named Bernhard Riemann postulated a law capable of describing with an amazing degree of accuracy the baffling occurrence of prime numbers; coming up with its proof has been the holy grail of mathematicians ever since. In 'Stalking the Riemann Hypothesis, Dan Rockmore, a prominent mathematician in his own right, takes us from Euclid's pondering of the infinitude of the primes through modern efforts to prove the Riemann hypothesis-efforts that astonishingly connect the primes to the statistics of solitaire, chaos theory, and even the mysteries of quantum mechanics. Along the way, he introduces us to the many brilliant and fascinating thinkers who have contributed to this work, from the most famous mathematician of all time, Carl Friedrich Gauss (Riemann's teacher), to the intellectual giants David Hilbert and Freeman Dyson.
A lively, comprehensive, and accessible examination of one of the most compelling unsolved problems in mathematics, 'Stalking the Riemann Hypothesis tells us the full story of the quest to find that elusive solution.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2006
Êîëè÷åñòâî ñòðàíèö: 292
Äîáàâëåíà â êàòàëîã: 11.03.2008
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Moses 93
Mosteller, Fred 224 225
Mount Holyoke 244—245
Multivalued function 147—148
Nachlass (Riemann) 140
Nahin, Paul 72
Napoleon 81—82
Nash, John, Jr. 152—153
Natal University 211
Natural logarithm 34—35
Natural numbers 7—20
Natural numbers, as "God given" 7 70 111 137
Natural numbers, composites 12—13
Natural numbers, defined 7
Natural numbers, primes see “Prime numbers”
Ncudcckcr, Werner 152
negative numbers 71
Nevanlinna, R. 145
New York Times 148 149
New York University 3—6 241 243 261—263
Newlands, John 108
Newman, Charlie 262 263
Newton, described 46—47
Newton, Isaac 38 48 50 52 82 236
Nobel prize 102 150 152 155 163 171 174 257
Nobel Prize, mathematics and 141—142
Nobel, Alfred 141—142
Non-Euclidean geometry 39 123 201 203—205
Noncommutative geometry 230
Noncommutative multiplication 169n 230
Nonlinear differential equations 238
Nonobstructive proof 265
Nonoricntable surface 97
Nontrivial zeta zeros 89—92
Nonzero 11 An
Nuclear weapons 249—250 255
NUMBER 259
Number theorists 10
Number theory 10 53 265
Numerical methods 250
Numerosity, pattern of 8—10
Occam's razor 221
Odlyzko, Andrew 179n 198 199 218 258 263
Odlyzko, described 180—181
Odlyzko, Dyson — Moncgomery — Odlyzko Law 180—185
On the Propagation of Heat in Solid Bodies (Fourier) 81
Operator 177
Operator theory 234
Operator, integral 178—179
Operator, zeta zeros and 180 220
Origin of Species, The (Darwin) 63
orthogonal matrices 219
Overfitting data 38 40
p-adic numbers 229—230
Pacific Institute of Mathematical Sciences 265
Painlcve equations 237 238
Painleve transcendants 237—240 256
Painleve, described 238—239
Painleve, Paul 237—240 246
Pair correlations 157—160 164
Parallel postulate 203—204
Partial differential equation 82
Patience sorting 253—254
Patterns 8—14
Patterns, figurate numbers and 10—11
Patterns, numerosity 8—10
Patterns, patterns within 11—14
Pavlovskii, V.V 228
Peer review 148
Perfect number 12
Perfect shuffles 249
Periodic functions 83
Periodic orbit 191 192
permutations 245—259
Permutations, computer science and 247—249
Petain, Marshal 238
Philosophy 10
Physics 171
Physics, bridge between quantum mechanics and see “Scmidassical limit”
Physics, physicists 217
Physics, statistical 233
Pi 58 70—71 72
Planar domains 196
Planck's constant 187—188
Planck, Max 187
Plato 13 63
Poe, Edgar Allan 24 236
Poincare conjecture 202
Poincare disk 200—209
Poincare disk, chaos in 207—209
Poincare, described 202
Poincare, Henri 102
Point 204n
Poisson process 158—160
Poisson, Simeon — Denis 158
Polya Prize 260
Polya — Hilbert approach 179—180 185 198—199 227 232
Polya, described 177—178
Polya, George 177—180 259—260
Polya, integral operators and 178—179
Polynomial 72
Polytechnical School of Delft 95—96
Pomerance, Carl 264
Pons, Jean — Louis 40
Population density 41
Poussin, Nicholas 107 119 120
Preprocessing 248
Primal curve 28—29 32
Primal waves 86—87
Primality tests 15—16 264
Prime distribution analyzer (PDA) 76—77
Prime distribution analyzer (PDA), Dirichlet's 77 81
Prime distribution analyzer (PDA), Eulcr's 77 81
Prime distribution analyzer (PDA), Riemannian 77—81
Prime factorization 14 20
Prime number theorem 63 91—94 95
Prime Number Theorem, Cramer primes and 138—139
Prime Number Theorem, Gauss and 42—44 69 106 119 120 126 132—133 137 141 185
Prime Number Theorem, Lcgendre and 35—38 69
Prime Number Theorem, mathematically written 36n
Prime Number Theorem, proof of 105 106—107 116 118 119 129 139
Prime Number Theorem, statement of 35
Prime numbers, algorithms for checking 264
Prime numbers, as the integral atoms 14—15
Prime numbers, asymptotic study of 23—30 51 118—129
Prime numbers, cardinality of 22—23
Prime numbers, composites and 12—13
Prime numbers, Cramer 137—139 151
Prime numbers, defined 4
Prime numbers, digital cryptography and 17—18
Prime numbers, error correction and 16—17
Prime numbers, Euclid s proof of the infinitude of 18—20 21 24 28 50 51
Prime numbers, first cartographers of 30—45
Prime numbers, Gauss and see “Gauss Carl
Prime numbers, Gaussian 112—123
Prime numbers, graphs of occurrence of 25—29
Prime numbers, harmonic series and 55—61
Prime numbers, Hawkins 151—152
Prime numbers, infinity of 18—20 21 51 59—62
Prime numbers, irregular appearance of 23—29
Prime numbers, Lcgendre and see “Legendre Adrien 23—29 Marie”
Prime numbers, music of 81—85
Prime numbers, pattern within the pattern 11—14
Prime numbers, periodic tables for 59—61 107—110
Prime numbers, Riemann hypothesis and see “Riemann hypothesis”
Prime numbers, search for 14—16
Prime numbers, series of reciprocals of 51—59
Prime numbers, shape of 21—29
Prime numbers, slowing occurrence of 41—42
Prime numbers, speaking in 16—18
Prime numbers, twin 23—24
Prime numbers, zeta zeros and see “Zeta zeros”
Princeton University 154 155 174 195 214 218 219 242—243 262
Probabilistic number theory 137
Probability theory 223
Proof (Auburn) 50
Proof of Riemann hyporhesis, code breaking and 149—152
Proof of Riemann hyporhesis, Cramer and 136—139
Proof of Riemann hyporhesis, de la Vallee — Poussin and 107—110
Proof of Riemann hyporhesis, early twentieth century pursuit of 120—127
Proof of Riemann hyporhesis, eigenvalues and see “Eigenvalues”
Proof of Riemann hyporhesis, epilogue 263—266
Proof of Riemann hyporhesis, first steps in 128—153
Proof of Riemann hyporhesis, Hadamardand 107—110
Proof of Riemann hyporhesis, Hamiltonian matrix and 227—228
Proof of Riemann hyporhesis, limits of computation 132—134
Proof of Riemann hyporhesis, Millennium meeting and 3—6 261—263
Proof of Riemann hyporhesis, Nash and 152—153
Proof of Riemann hyporhesis, rwo-pronged assault 129
Proof of Riemann hyporhesis, search for 131
Proof of Riemann hyporhesis, Sicgel and 139—140
Proof of Riemann hyporhesis, Stieltjes and 95—99 104—105
Proof of Riemann hyporhesis, true, false, or neither 134—136
Pseudosphere 207
Ptolemy I. 13 50
Purdue University 262 265
Putnam Exam 234
Pythagoras (Pythagoreans) 10—13 54
Pythagoras (Pythagoreans), theorem of 113n 114 115
Quadratic formula 72
Quantization 196—200
Quantum chaos 187—190
Quantum chaos, basic conjecture of 197—200
Quantum chaos, Berry and 187 188—189 197—198
Quantum chaos, billiard tabic analogy see “Billiard tables for physicists”
Quantum chaos, comparison of distributions 222
Quantum chaos, making order out of 213—231
Quantum chaos, Sarnak and 217—221
Quantum chaos, zeta zeros and 199
Quantum chromodynamics (QCD) 237
Quantum electrodynamics (QED) 163 171 237
Quantum gravity 236—237
quantum mechanics 115 136—137 see
Quantum mechanics, classical physics and 171
Quantum mechanics, Planck's constant and 187—188
Quantum mechanics, spectral lines and 172—173
Quantum mechanics, uncertainty principle and 135 187—188
Quantum mechanics, wave function and 171—172 176—179
Rademachcr, Hans 147—149
RAF Bomber Command 162—163
Rains, Eric 258
Random matrices 173—175 177—180 218
Random Matrices (Mchta) 218 239 244 245
Random matrices, Deift and 244—246
Random matrices, RSK and 258—259
Random matrices, Tracy — Widom distributions and 234—241
Random walk 100—104 177 178
Random Walk Down Wall Street, A (Malkiel) 102
Randomness 157—160
Randomness, understanding through 173—175
Rational integers 114
Rational numbers 70 116
Real axis 74
Real numbers 116
Real part of complex numbers 73 74
Reciprocals, of logarithms 41—42
Reciprocals, of Riemann's zeta function 96—99
Reeds, Jim 248
Reid, Constance 179 260n
Relative (percentage) error 126—127
Relativity theory, general 136 236—237
Relativity theory, special 202
Repulsion 160
Reseating data 158—160
Rhind papyrus 246—247
Rhind, Henry 246
Rhodes University 242
Richter scale 33
Riemann hypothesis 88—94 125
Riemann hypothesis, as "very likely" 91—94
Riemann hypothesis, as possibly undecidable 134—136
Riemann hypothesis, attempts to prove see “Proof of Riemann hypothesis search for”
Riemann hypothesis, claimed proofs (dc Branges) 262—263 265—266
Riemann hypothesis, complex numbers and 70—73
Riemann hypothesis, complex plane and 73—76
Riemann hypothesis, defined 4—5 47 88—91
Riemann hypothesis, equivalence to eigenvalue properties of matrix 179 185
Riemann hypothesis, extended 219
Riemann hypothesis, for function fields 145—147
Riemann hypothesis, for L-series 110
Riemann hypothesis, generalized 120—121
Riemann hypothesis, incorrect refutation (Rademache) 147—149
Riemann hypothesis, Polya — Hilbert approach 179—180
Riemann hypothesis, publication of 63—64
Riemann hypothesis, quest to settle 4—6
Riemann hypothesis, raw material for 53
Riemann hypothesis, road to 64—69
Riemann hypothesis, web of connections to 259—260
Riemann hypothesis, zeta function and see “Riemanns zeta function”
Riemann hypothesis, zeta zeros and 4 5 88—91
Riemann surfaces 147
Riemann — Hilbert problems 243—244
Riemann — Siegel formula 139—140 150—151
Riemann's zeta function 5 see search
Riemann's zeta function, "zoo" of zeta functions and 142—143 218
Riemann's zeta function, creation of 76—81
Riemann's zeta function, Fourier analysis and 81—85
Riemann's zeta function, integral form of 80—81 129
Riemann's zeta function, logarithm of 81
Riemann's zeta function, music of the prime powers and 81—85
Riemann's zeta function, reciprocal of 96—99
Riemann's zeta function, Riemann hypothesis and 88—94
Riemann's zeta function, zeros of 85—92 119 125—126
Riemann, academic mentors of 45 59 61—62 65—69 76—78
Riemann, Bemhard 4—6 63—94
Riemann, death of 65 92—93
Riemann, early life 65—66
Riemann, formulation of zeta function 80
Riemann, notes of 64—65
Riemann, reinvention of space 66—69
Riemann, statement of Riemann hypothesis 88—91
Riemannian geometry 66—69
Riemannian manifold 68
Riemannian prime distribution analyzer 77—81
Riemanns Zeta Function (Edwards) 140
Riffle shuffling 248
Rising sequence 252—259
Robinson — Schensted — Knuth (RSK) construction 257—259
Robinson, Gilbert de Beauregard 257
Rosser, John Barkery 151
Royal Danish Academy 75
Royal Society 150
Rubinstein, Michael 219
Rudnick, Zeev 218—229
Rutgers University 233
Saddle point 207
Samak, Cohen and 214—226
Samak, described 214 263
Samak, Katz and 219—221
Samak, Peter 143 185 227 231 244 260 262
Samak, quantum chaos and 217—221
Samak, Rudnick and 218—229
Sato, M. 237 239—240
Saxena, Nitin 264
Scattering theory 242—243
Schcnsted, Craige 257
Schmit, Charles 198
Schoenfeld, Lowell 151
Scholcs, Myron 102
Schrodinger, Erwin 179
Ðåêëàìà