Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Rockmore D. — Stalking the Riemann Hypothesis
Rockmore D. — Stalking the Riemann Hypothesis



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Stalking the Riemann Hypothesis

Àâòîð: Rockmore D.

Àííîòàöèÿ:

In 1859 a German professor named Bernhard Riemann postulated a law capable of describing with an amazing degree of accuracy the baffling occurrence of prime numbers; coming up with its proof has been the holy grail of mathematicians ever since. In 'Stalking the Riemann Hypothesis, Dan Rockmore, a prominent mathematician in his own right, takes us from Euclid's pondering of the infinitude of the primes through modern efforts to prove the Riemann hypothesis-efforts that astonishingly connect the primes to the statistics of solitaire, chaos theory, and even the mysteries of quantum mechanics. Along the way, he introduces us to the many brilliant and fascinating thinkers who have contributed to this work, from the most famous mathematician of all time, Carl Friedrich Gauss (Riemann's teacher), to the intellectual giants David Hilbert and Freeman Dyson.
A lively, comprehensive, and accessible examination of one of the most compelling unsolved problems in mathematics, 'Stalking the Riemann Hypothesis tells us the full story of the quest to find that elusive solution.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2006

Êîëè÷åñòâî ñòðàíèö: 292

Äîáàâëåíà â êàòàëîã: 11.03.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
"Black box"      174
"Cost of close"      225—227
"Hilbert problems"      123—125 134—136 215 243
"Mathematical Problems"      121—125
"Neutrino billiards"      228
"On Formally Undecidable Propositions of Principia Mathematica and Related Systems"      135—136
"On the Hypotheses That Lie at the Foundation of Geometry"      66—69
"On the Number of Primes Less Than a Given Magnitude"      63—64
"Round Table" of magicians      221
"von Koch snowflake"      126
Absolute error      126
Abundant number      12
Adeles      230—231
Agrawal, Manindra      264
Alcph zero      22
Alexander, James      155
Algebraic geometry      122—123 125
Algebraic geometry,"modern"      144 145
Algebraic number theory      115 123
Algebraic numbers      71—72
Algebraic topology      125
Algebraists      170
Algorithms      248—259
Algorithms, asymptotic analysis of      255
Algorithms, deterministic      264n
Algorithms, for checking primes      264
Algorithms, Monte Carlo      250
Algorithms, polynomial-time      264
Algorithms, probabilistic      264n
algorithms, sorting      250—259
Amicable number      12
Amplitude of waves      83—87
Analog computers      150
analog-to-digital converters      255
Analysis      51
Analysis of the Infinite (Euler)      49 59
Analytic continuation      80n
Analytic number theory      115
Applied linear algebra      129
Arcadia (Stappard)      50
Arenstorf, R.R      265
Argand, Jean      75n
Aristotle      49
Arithmetic progression      60—61 108 265
Arithmetic, "odometer"      146
Arithmetic, fundamental theorem of      14
Arithmetic, transfinite numbers and      215
Art of Computer Programming, The (Knuth)      257
Association for Computing Machincn'      150
Astrophysics      21
Asymptotics      23—30
AT&T      248 258
Atomic nuclei      163—164 see
Atomic nuclei, eigenvalues and eigenvectors      175—177
Atomic nuclei, ensemble behavior of      174—175
Atomic nuclei, Hamiltonian matrix and      171—175
Atomic nuclei, radiation from      172—173
Atomic nuclei, statistical physics and      173—175
Atomic nuclei, strong and weak forces in      171 237
Atomic nuclei, wave function and      171—172 176—179
Auburn, David      50
Bachelier, Louis      102
Baik, Jinho      233 245
Baik, Jinho, mathematics of permutations and      255—260
Bamberger family      154
Barrow, John      47
Base      33
Basic conjecture of quantum chaos      197—200
Basor, Estcllc      234—235
Beautiful Mind, A      50
Bell Laboratories      181 255
Bell-shaped curve      235—236 240
Berlin Academy      64—65
Betry, described      187 188—189
Betry, Hamiltonian matrix and      227 228
Betry, Sir Michael      197—198 208 211 231 262
Bicbcrbach conjecture      262—263
big bang      21 31
Billiard tables for physicists      190—207 211—222
Billiard tables for physicists, "neutrino billiards"      228
Billiard tables for physicists, circular      191—192
Billiard tables for physicists, elliptical      192—193
Billiard tables for physicists, hyperbolic geometry and      200—202 205—212
Billiard tables for physicists, Poincarc disk and      200—209
Billiard tables for physicists, rectangular      191
Billiard tables for physicists, Russian      193—196
Billiard tables for physicists, specular reflection and      191
Binary expansion      17—18
Binary sequences      16
bits      16
Black — Scholcs equation      102
Black, Fischer      102
Bohigas, Oriol      198 211—222 222
Bohr, Harald      130 142
Bohr, Niels      49 130 187 190 227
Boltzmann, Ludvvig      173
Bolyai      203
Borderlands between classical and quantum mechanics      see “Semidassical limit”
Bosons      239
Bourbaki, Charles      144—145
Bourbaki, Nicholas      144
Boxcar      160—161
Brahe, Tycho      46 47
Brcuer, Marcel      156
Bristol University      189
Brown, Robert      102
Brownian motion      102
Bulk spectrum      232
Bunimovich's stadium      194 195 200
Bunimovich, Leonid      195
Calculus      10 46 47 49 52 57 236
Calculus, extending, to the complex world      75—76
Calendars      46
California Polytechnic State University      234
Cambridge University      162 163
Cantor, Georg      22 125 135 215
Card shuffling      245 248—259
Card shuffling, perfect      249
Card shuffling, riffle      248
cardinal number      22
Cardinality      22—23
Cardona, Girolamo      73 215
Cauchy, Augustin — Louis      69
Cavley, Arthur      169—170 257
Celestial mechanics      48
Central limit theorem      100—104
Central limit theorem, first appearance of      236
CERES      39
Chaos      189
Chaos, quantum      see “Quantum chaos”
Chaotic dynamical systems      189—190 193—195
Choquet, Gustave      231
City College of New York      224 234
Clay Institute of Mathematics      6
Clay Prize      262
Closed trajectory      191
Cohen, continuum hypothesis and      215
Cohen, described      214—226
Cohen, Paul J.      230—231
Coin-tossing, repeated      100—104 137—138 151—152
Coincidence      225—227
College de France      229
Colors      166—169
Columbia University      141 152
Combinations      246
Combinatorial enumeration      247
Combinatorial optimization      247
Combinatorics      223 245—247
Commutative multiplication      169n 230
Complex analysis      69 76
Complex conjugates      176—177
complex numbers      69 70—73
Complex numbers, geometric representation of      75
Complex plane      73—76 110
Complex power      78—81
Complexity theory      149
Composite numbers      12—13
Composite numbers, Cramer      137—139
Compounding continuously      35 78—79
Comptes Rendus      95
Computation, limits of      132—134
Computational complexity      149
Computers      123 128 149—151
Computers, algorithms and      249—250
Computers, asymptotic analysis and      255
Computers, permutations and      247—249
Computers, physics of      228
Computers, TeX and      257
Comrie, L.J.      140
Conlocal ellipse      193
Connes, Alain      228—231 262 265
Connes, described      229
Constant curvature      67—68
Constant of motion      193
Constructive numbers      70—71
Continuum Hypothesis      215
Convergent Series      53
Conway, J.      134
coordinates      68
Copernicus      50
Coram, Marc      226—227
Correlation      157—160
Correspondence      8—9
Correspondence principle      187 190 227
Countabiliry      22
Courant Institute of Mathematical Sciences      3—6 243 245 261—263
Cramer composites      137—139
Cramer primes      137—139 151
Cramer, Carl Harald      136—139 151 153
Cramer, described      136—137
Critical line      92 125
Critical line, connection to Riemann hypothesis      92
Critical line, connection to Riemann hypothesis for L-series      110
Critical line, infinity of zeta zeros on (Hardy)      129—130
Critical line, percentage of zeta zeros on      131 151
Critical strip      89—92
Critical strip, de la Vallee — Poussin      119—120
Cryptography      17—18
Cubic polynomials      72—73
Curvature      67—68 207
CYCLE      251—253
Dalton, John      49
Dartmouth College      234 264
Darwin, Charles      63
Dcligne, Pierre      220
de Branges dc Bourcia, Louis      262—263 265
de la Vallee — Poussin      106—110 265
de la Vallee — Poussin, described      106—107
de la Vallee — Poussin, Prime Number Theorem and      106—107 129 139
de la Vallee — Poussin, Riemann's zeta function and      107—110 119—120
De Moivre, Abraham      236
Death of a Salesman (Miller)      134—135
Decibel system      34
Dedckind cuts      116
Dedckind zeta function      93 116 143
Dedckind, described      115
Dedckind, Richard      93 115—126
Deficient number      12
Deift, described      241—243
Deift, integrable systems and      243
Deift, mathematics of permutations and      255—260
Deift, Percy      233 255 262
Deift, Tracy — Widom distribution and      240—246
Denninger, Chrisroph      262
density      41
Denumcrability      22
Descartes, Rene (Cartesian philosophy), 32n      68 122
Description of Egypt (Fourier)      82
Diaconis, "cost of close" and      225—227
Diaconis, described      221
Diaconis, magic and      221—225
Diaconis, Persi      221—227 243—244 246 249
Differential equations      238
Differential geometry      39
Digger, x      166 195
Digital communication      16—18
Digital cryptography      17—18
DIMENSION      202n
Dimension of a space      229—230
Diophantine problems      144
Dirichlet L-scries      61 109—110 137 143 219
Dirichlet zeta function      116
Dirichlet, described      59
Dirichlet, Gustav      45 47 265
Dirichlet, infinity of primes and      59—62 108—110
Dirichlet, prime distribution analyzer of      77 80 81
Dirichlet, Riemann and      65—69 76—78 84
Discrete mathematics      223
Disquisitiones anthmeticae (Gauss)      38—39
Divergent series      53
Divisibility      12
Divisibility, for Gaussian integers      112
Doctrine of Chances, The (de Moivre)      236
Drevfus, Alfred      106
Duke University      243
Dynamical systems, chaotic      193—195
Dynamical systems, simplest      191—193
Dyson — Montgomery — Odlyzko Law      180—185 188
Dyson, described      162—164
Dyson, Freeman      263
Dyson, Hamiltonians and      170—177 180
Dyson, matrices and      165 233 234
Dyson, Mildred Atkcy      162
Dyson, Montgomery and      154 162 164 180
Dyson, Sir George      162 163
e      34 72
e, quantified      34—35 78—79
e: The Story of a Number (Maor)      34h
Edwards, H.      140
Eigenvalues      175—177
Eigenvalues, of a random matrix      258
Eigenvalues, on the edge      236—240
Eigenvalues, Tracy — Wisdom distributions and      234—241 245—246
Eigenvalues, zeta zeros and      175—185 199—200 210—221 220 225—229 232
Eigenvectors      175—176
Einstein, Albert      4 50 68 102 202 231 236
Einstein, Institute for Advanced Study and      136 142 154 155
Electromagnetic waves      84
Electrons      163 171
Elements (Euclid)      13 203
Elliptic geometry      204—205
Encke Gap      40
Encke, Johann      40—41
encrypted messages      17—18
Ensemble behavior      174—175
Enumeration      246—247
Eratosthenes      15
Eratosthenes,"sieve" of      15—16 24
Erdoes, Taul      141
Ergodic motion      194—195
Ergodicity      190
Error correction      17
Error term      119—120 126—127
Escher, M.C.      206
Essay on a Manner of Representation of Imaginary Quantities through Geometric Constructions (Argand)      75b
Euclid      13 122
Euclid, geometry of      13 68 203—204
Euclid, proof of the infinitude of primes      18—20 21 24 28 50 51 60
Euler equations      47
Euler factorization      55—57 61
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå