Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Lanza R. (ed.), Weissman I. (ed.), Thomson J. (ed.) — Handbook of Stem Cells (vol. 1) Embryonic Stem Cells
Lanza R. (ed.), Weissman I. (ed.), Thomson J. (ed.) — Handbook of Stem Cells (vol. 1) Embryonic Stem Cells



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Handbook of Stem Cells (vol. 1) Embryonic Stem Cells

Àâòîðû: Lanza R. (ed.), Weissman I. (ed.), Thomson J. (ed.)

Àííîòàöèÿ:

The Handbook of Stem Cells, edited by Robert Lanza and colleagues, is an ambitious new text that achieves extraordinary completeness and inclusiveness...the editors have succeeded in putting together a reference that is broad enough in scope, but sufficiently detailed and rigorous, to be of real interest to both new and seasoned investigators in the field.


ßçûê: en

Ðóáðèêà: Áèîëîãèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2004

Êîëè÷åñòâî ñòðàíèö: 843

Äîáàâëåíà â êàòàëîã: 16.04.2007

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
CBP/p300      2: 107 2:
CCAAT/enhancer binding proteins      1: 329
CD 10 cells, common lymphoid progenitor phenotype      2: 350—351
CD 10 cells, lymphoid potential      2: 349
CD105 cells      2: 427
CD133 antigen      2: 617
CD166 cells      2: 427
CD25 cells      1: 679
CD26 cells      2: 184
CD29 cells      2: 749
CD3 cells, immune reconstitution by HS cell implant      2: 751 2:
CD3 cells, T cell expression      1: 676 1: 2:
CD31 cells      2: 162—163 2:
CD34 cells      2: 14
CD34 cells as hematopoietic stem cell marker      2: 323—324 2: 2: 2: 2: 2: 2: 2:
CD34 cells in hematopoietic development      2: 160 2: 2: 2: 2:
CD34 cells in hematopoietic stem cell transplantation      2: 688
CD34 cells in umbilical cord blood      2: 182—183
CD34 cells in vascular development      1: 323 1:
CD34 cells, common lymphoid progenitor phenotype      2: 350—351
CD34 cells, gene expression profile      2: 89 2:
CD34 cells, immune reconstitution by HS cell implant      2: 752
CD34 cells, lymphoid potential      2: 349—350
CD34 cells, satellite cells      2: 398
CD34 cells, slide population      2: 26
CD34 cells, very late antigen expression in      2: 597
CD38 cells in hematopoietic development      2: 161
CD38 cells in umbilical cord blood      2: 182—183
CD38 cells, common lymphoid progenitor phenotype      2: 350—351
CD4 cells in graft rejection      1: 666
CD4 cells in T cell formation      2: 745—746
CD4 cells, age-related changes      2: 749
CD4 cells, development and function      1: 679
CD4 cells, immune reconstitution by HS cell implant      2: 751 2: 2:
CD4 cells, lymphoid potential      2: 349—350
CD4 cells, T cell expression      1: 676 1:
CD41 cells      2: 160—161
CD44 cells      2: 160
CD44 cells in hematopoietic development      2: 598
CD45 cells in hematopoietic development      2: 161 2: 2:
CD45 cells in T cell formation      2: 746
CD45 cells, age-related changes      2: 749
CD45 cells, expression in muscle-derived hematopoietic stem cells      2: 405—407
CD45 cells, immune reconstitution by HS cell implant      2: 751 2: 2:
CD45 cells, nonhematopoietic gene expression      2: 362
CD49 cells      2: 428—429
CD7 cells      2: 350—351
CD8 cells in graft rejection      1: 666
CD8 cells in T cell formation      2: 745—746
CD8 cells, age-related changes      2: 749
CD8 cells, immune reconstitution by HS cell implant      2: 751 2: 2:
CD8 cells, precursors      2: 361
CD8 cells, T cell expression      1: 676 1:
cDNA sequencing, microarray analysis      2: 28 2: 2: 2:
cDNA sequencing, serial analysis of gene expression      2: 28—29
Cdx genes      2: 533—534
Cell adhesion in epidermal stem cell differentiation      2: 251
Cell adhesion in hematopoietic stem cell mobilization and homing      2: 597—598
Cell adhesion in olfactory system      2: 233
Cell adhesion in stem cell niche functioning      2: 62—63 2:
Cell banks      2: 808—809
Cell cycle in vivo kinetics      2: 73—74 (see also “Embryonic stem (ES) cells cell “Gl “G2
Cell cycle, aging effects      2: 338
Cell cycle, checkpoints      2: 116—118 2: 2:
Cell cycle, checkpoints, overriding      2: 120—121
Cell cycle, clinical significance      2: 73 2:
Cell cycle, cyclins and Cdk complexes in      2: 73 2: 2:
Cell cycle, donor-recipient compatibility in cloning      1: 123 1:
Cell cycle, ex vivo stem cell expansion      2: 74
Cell cycle, hematopoietic stem cells      2: 115—121
Cell cycle, progenitor cell pool in      2: 73—74
Cell cycle, stem cell regulation      2: 73—78
Cell fusion in somatic cell nuclear transfer      1: 624—625
Cell fusion in tumor formation      1: 112 2:
Cell fusion of differentiated phenotypes      1: 111—112
Cell fusion of pluripotent cells      1: 112—113
Cell fusion, conditions for      2: 153
Cell fusion, early research      2: 153—154
Cell fusion, epigenetic reprograming by ES cells      2: 295
Cell fusion, frequency in culture      2: 154
Cell fusion, hybrid vigor      2: 154
Cell fusion, intracellular      2: 153
Cell fusion, multipotent adult progenitor cells      2: 295
Cell fusion, normal in vivo      1: 114—115
Cell fusion, reprogramming somatic cell nuclei with cytoplasm of pluripotent cells      1: 113—114
Cell fusion, stem cell plasticity and      1: 114—115
Cell fusion, techniques      1: 111
Cell fusion, therapeutic implications      2: 155—156
Cell fusion, types of      2: 153
Cell fusion, vs. cell transdifferentiation      2: 16 2: 2: 2: 2: 2:
Cell fusion, Y-chromosome hybridization      2: 15
Cementoblasts      2: 284
Cementum      2: 279 2: 2:
Center for Biologies Evaluation and Research      2: 804 2: 2:
Center for Biologies Evaluation and Research, regulatory approach      1: 775—785
Central nervous system      1: 237—247
Central nervous system, adult stem cell population      2: 219—222
Central nervous system, cell cycle regulation      2: 74
Central nervous system, cell fate determinants      1: 237 1: 2:
Central nervous system, development      1: 205—214 1: 1: 2: 2:
Central nervous system, development, vertebrate neurogenesis      1: 205—214
Central nervous system, disorders of      1: 245—247
Central nervous system, injury response      2: 698
Central nervous system, multipotent adult progenitor cell implantation      2: 295
Central nervous system, neurogenesis      2: 219—221
Central nervous system, patterning      2: 192—197
Central nervous system, progenitor cells      2: 191
Central nervous system, promoting intrinsic repair      2: 698—699
Central nervous system, regenerative capacity      2: 219 2: 2: 2:
Central nervous system, retinal regeneration      2: 704—706
Central nervous system, stem cell therapy      1: 709
Central nervous system, stem cell therapy, challenges      2: 695—696
Central nervous system, stem cell therapy, future prospects      2: 699
Central nervous system, stem cell therapy, inductive signaling issues      2: 698
Central nervous system, stem cell therapy, manipulation of cells for      2: 697—698
Central nervous system, stem cell therapy, sources of cells for      2: 696—697
Central nervous system, therapeutic interventions      2: 221—222 (see also “Neural stem cells” “Neurons” “Spinal
Centrosomes      1: 175—176
Centrosomin      1: 175
Cerebrovascular infarction      1: 246
Chemical mutagenesis      1: 599—601
Chemical mutagenesis, future research      1: 605—606
Chemical mutagenesis, library of mutagenized cells      1: 602—603 1:
Chemical mutagenesis, screening for      1: 601—602 1:
Chemokine-induced stem cell mobilization      2: 595—596 2:
Chemotherapy      2: 621—622
Cholangiocytes      2: 497—498
Chondrocytes, bone development      2: 415 2:
Chondrocytes, differentiation      1: 288—289
Chondrocytes, function      1: 285
Chondrocytes, growth factors      2: 774
Chondrocytes, processed lipoaspirate cells in formation of      2: 434—436 2:
Chondrocytes, tissue engineering      2: 773—775
Chondrocytes, Xenopus animal cap culture      1: 489f
Chorioallantoic placenta      1: 194 1:
Chorioallantoic placenta, signaling pathways in      1: 197
Chorion      1: 194 1:
Chromatin in cell self-renewal      2: 27
Chromatin in epiblast formation      1: 129
Chromatin, ATPase chromatin-remodeling complexes      1: 70—72 1:
Chromatin, biological significance      1: 63—67
Chromatin, cell remodeling      2: 148
Chromatin, chromatin-modifying protein knockout mice phenotypes      1: 65—66t
Chromatin, DNA methylation      1: 68—69 1:
Chromatin, epigenetic processes in modification of      1: 72—81 1:
Chromatin, histone modification      1: 69—70 2:
Chromatin, Hoescht—33342 staining      2: 330
Chromatin, structure      1: 63 1: 2:
Chromosomal engineering      1: 618—620 1:
Chromosome condensation      2: 148
Chronic myeloid leukemia      1: 280 2: 2:
Churchill gene      1: 138 1:
Ciliary marginal zone      1: 253
Ciliary neurotrophic factor (CNTF)      1: 28
Ciliary neurotrophic factor (CNTF) in gp30/gpl30 dimerization      1: 28—29
Clara cell secreting proteins      2: 552
Clara cells      2: 548
Clinical trials      1: 776
Clonal analysis techniques      2: 651—658 2:
Cloning, chromatin role in      1: 64—67
Cloning, defining characteristics      2: 2
Cloning, developmental defects in      1: 63—64
Cloning, early research      1: 626 2:
Cloning, epidermal assays      2: 5
Cloning, epigenetic processes in      1: 63 1:
Cloning, epigenetic reprogramming in      1: 119—124
Cloning, nuclear transfer outcomes      1: 626—628 1:
Cloning, ring isolation      2: 14
Cloning, X-chromosome inactivation in      1: 63 (see also “Nuclear transfer cloning” “Reproductive “Therapeutic
Code of Federal Regulations      2: 804
Collagen      1: 285—286 1: 2: 2:
Collagen as ES cell culture substrate      1: 3f
Collagen in chondrogenesis      2: 435
Colony-forming assay      1: 414—415
Colony-forming units, erythrocyte      2: 356
Colony-forming units, fibroblastic      2: 416—417 2:
Colony-forming units, granulocyte and macrophage      2: 356
Colony-forming units, megakaryocyte      2: 356
Colony-forming units, myeloerythroid      2: 356 2:
Colony-forming units, spleen      2: 1 2: 2: 2:
Columnar cells      2: 522
Commercial development of stem cell technology      1: 787—792 1: 1: 2:
Common lymphoid progenitors      2: 87 2: 2:
Common lymphoid progenitors in CD8 generation      2: 361
Common lymphoid progenitors in dendritic cell ontogeny      2: 360—361
Common lymphoid progenitors in hematopoietic stem cell regulation      2: 25 2: 2:
Common lymphoid progenitors in lymphoid commitment      2: 356—358 2:
Common lymphoid progenitors in thymopoiesis      2: 351—352
Common lymphoid progenitors, alternative differentiation mechanisms      2: 351
Common lymphoid progenitors, clonal assays      2: 347
Common lymphoid progenitors, current conceptualization      2: 347 2: 2:
Common lymphoid progenitors, fetal liver      2: 365—366
Common lymphoid progenitors, functional lineage analysis      2: 349—350
Common lymphoid progenitors, GATA transcription factors in      2: 365
Common lymphoid progenitors, gene expression profile      2: 89 2: 2:
Common lymphoid progenitors, immunophenotype      2: 348 2: 2:
Common lymphoid progenitors, isolation and identification      2: 347—348
Common lymphoid progenitors, precursors      2: 95
Common lymphoid progenitors, transcription regulation      2: 95
Common myeloid progenitors      2: 87 2:
Common myeloid progenitors in bone marrow      2: 367—368 2:
Common myeloid progenitors in CD8 generation      2: 361
Common myeloid progenitors in dendritic cell ontogeny      2: 360—361
Common myeloid progenitors in hematopoietic stem cells      2: 115 2:
Common myeloid progenitors in lymphoid commitment      2: 364—366
Common myeloid progenitors in myeloerythroid commitment      2: 358—360
Common myeloid progenitors, clinical significance      2: 368—369
Common myeloid progenitors, current conceptualization      2: 347 2:
Common myeloid progenitors, fetal liver      2: 365—366
Common myeloid progenitors, gene expression profile      2: 89 2:
Common myeloid progenitors, transcription regulation      2: 95
Compaction      1: 129 1:
Connexins in ES cell differentiation      1: 102
Connexins in gap junction structure      1: 101 1:
Connexins, biological significance      1: 101
Connexins, characteristics      1: 101—102
Connexins, classification      1: 101 1:
Connexins, human diseases linked to mutations in      1: 104t
Connexins, structure      1: 101—102
Connexins, transcriptional regulation      1: 107
Cornea, epithelial transplant      2: 768
Cost of skin grafts      2: 768
Counterflow centrifugal elutriation      2: 616
CpG dinucleotides      1: 68 1: 1: 2:
Craniofacial structures, clinical potential of neural crest cells      2: 215
Craniofacial structures, morphogenesis      1: 224 1: 1: 1:
Cre-lox system      1: 547 1: 1: 1: 1: 1: 1: 1: 1: 2:
Cre-lox system, evidence of transdifferentiation      2: 155
Cre-lox system, neural crest cell fate mapping      2: 226 2:
Cre-lox system, satellite cell studies      2: 396—397
Cripto      1: 305—306
Crohn’s disease      2: 529—530
Cruciate ligaments      2: 776
Cryopreservation of blood      2: 182
Cryopreservation, embryoid body-derived cells      1: 468
Cryopreservation, embryonic fibroblasts      1: 537
Cryopreservation, embryonic germ cells      1: 454—455
Cryopreservation, ES cell samples      1: 426—427 1: 1: 1: 1: 1:
Cryopreservation, trophoblast stem cells      1: 481
Culture conditions for cell fusion      2: 153—154
Culture conditions for CNS cell replacement      2: 697—698
Culture conditions for osteoclast induction      1: 297—301 1:
Culture conditions for tissue engineering applications      1: 741 2:
Culture conditions, amniotic fluid      2: 175—176
Culture conditions, avian stem cells      1: 471—477
Culture conditions, bladder replacement cells      2: 565—566
Culture conditions, cardiomyocyte      1: 717—718 1:
Culture conditions, contamination      1: 438
Culture conditions, creating library of mutagenized cells      1: 602—603 1:
Culture conditions, differentiation of ES cells in adipocytes      1: 329—330 1:
Culture conditions, early ES cell research      1: 1—3
Culture conditions, EG cell derivation from primordial germ cells      1: 451—454 1:
Culture conditions, embryoid body mass culturing techniques      1: 333 1:
Culture conditions, embryonic carcinoma cells      1: 530—531
Culture conditions, ES/ESL cells      1: 20 1: 1:
Culture conditions, ES/ESL cells, feeder-free cultures      1: 431 1:
Culture conditions, ES/ESL cells, research needs      1: 529 1:
Culture conditions, hematopoietic progenitor cell separation and expansion      2: 618—619
Culture conditions, hematopoietic stem cell expansion      2: 622—623
Culture conditions, hepatocytes for transplantation      1: 359—360 1:
Culture conditions, Hoescht dye incubation      2: 330—331
Culture conditions, human ES cell derivation      1: 407 1: 1: 1: 1: 1:
Culture conditions, human ES cell derivation, safe practice      1: 779—781
Culture conditions, human ES cell derivation, subclones      1: 428
Culture conditions, human ES cell derivation, use of non-human feeder cell layers      1: 780—781
Culture conditions, inducing endothelial cell differentiation from ES cells      1: 317—321
Culture conditions, inducing ES cell differentiation to hematopoietic cells      1: 317—318 1:
Culture conditions, keratinocyte stem cells      2: 762 2:
Culture conditions, laminin-coated plates      1: 538
Culture conditions, long-term cultures      1: 489—490
Culture conditions, matrigel-coated plates      1: 538
Culture conditions, media components and recipes      1: 438—439
Culture conditions, melanocytes from ES cells      1: 233—235
Culture conditions, mesenchymal stem cells      2: 302
Culture conditions, monitoring      1: 437—438
Culture conditions, murine ES cells      1: 413—417
Culture conditions, muscle stem cells      2: 397
Culture conditions, myogenic stem cells      2: 574—577
Culture conditions, neural crest cell fates      2: 214
Culture conditions, neural differentiation of ES cells      1: 239—244 1: 1: 1:
Culture conditions, neural stem cells      1: 238—239 2:
Culture conditions, nuclear transfer cloning      1: 624
Culture conditions, pancreatic $\beta$-cells      2: 518
Culture conditions, polymer scaffolds      1: 367
Culture conditions, primate ES cell differentiation      1: 433—434
Culture conditions, processed lipoaspirate cells      2: 426—427 2:
Culture conditions, screening media      1: 439
Culture conditions, serum-free      1: 529—533
Culture conditions, spermatogonial stem cell maintenance      1: 179—180
Culture conditions, spinner flask cultures      1: 717—718
Culture conditions, stem cell expansion cultures      2: 663—671
Culture conditions, stem cell expansion cultures for tissue engineering      2: 784—785
Culture conditions, thymus epithelial cells      2: 557—558
Culture conditions, trophoblast stem cell lines      1: 197—200 1:
Culture conditions, trypsinization of human ES cell cultures      1: 442—446 1: 1: 1:
Culture conditions, use of bovine serum      1: 779—780
Culture conditions, vascular differentiation of ES cells      1: 318—321
Culture conditions, Xenopus animal cap cells      1: 483—491
Culture conditions, zebra fish ES cell derivation      1: 493—495
Cumulus cells      1: 644
1 2 3 4 5 6 7 8 9 10 11 12
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå