Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Artin M. — Algebra
Artin M. — Algebra



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Algebra

Автор: Artin M.

Аннотация:

This is a superb book to introduce any math major to the most important ideas of abstract algebra. How often does a mathematician with the world renowned research stature of professor Artin choose to devote the time and effort to write a beginning book in essentially his specialty (he is a famous algebraic geometer), and really make the ideas understandable to the young student? Primarily when he has to teach the course, and wants a suitable source to teach from. That is apparently the genesis of this book, which took birth as class notes for the undergraduate algebra course at MIT taught several times by Professor Artin. This fine book can serve well as an introduction, or second course in algebra, at either honors or upper undergraduate level, or even first year graduate level, (although it omits one topic, multilinear and tensor algebra that grad students will eventually need). The material obviously rolls off the author's fingertips, and the reader is the beneficiary, since it all looks easy to us too, although one must definitely think along the way. With the easily defensible belief that the most important groups in mathematics are linear ones, the author begins with matrices, carries these illustrative examples throughout the treatment of groups, and even includes a beautiful introductory section on some important classical lie groups that cannot be found in any other comparable beginning algebra text. When an author is a true master, as here, he is not limited to mimicking the topics found in other successful texts but can cover each topic as he chooses and to the depth he wishes. Other unique touches are a section on divisibility in number fields, including Minkowski's geometric proof of the finiteness of the class group. This is the best modern introduction to abstract algebra available.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1991

Количество страниц: 618

Добавлена в каталог: 09.12.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Pure transcendental extension      525
Pythagoras' theorem      125 503
Quadratic extension      497
Quadratic form      256
Quadratic number field      411
Quadratic number field, discriminant of      413
Quadratic reciprocity      440
Quadric      256
Quartic equation      560
Quaternion group      48
Quaternions      306
Quillen      482
Quintic equation      570
Quotient group      67
Quotient group, mapping property of      221
Quotient module      452
Quotient module, mapping property of      452
Quotient ring      359
Quotient ring, mapping property of      360
Radicals      571
Ramified prime      425
Range of a map      585
Rank      111
Rank of a free module      455
Rational canonical form      479
Rational function      370 516
Rational function, degree of      535
Ray      280
Real algebraic group      289
Real algebraic set      286
Real number, constructible      502
Real part      517
Real subfield      568
Reciprocity: Frobenius      343
Reciprocity: quadratic      440
Recursive definition      348
Reduced word      217
Reducible representation      315
Reduction, row      12
Reflection      157
Reflection, glide      157
Reflexive relation      53
Regular representation      323
Relation vector      464
Relation: equivalence      53
Relation: linear      88
Relation: reflexive      53
Relation: symmetric      53
Relation: transitive      53
Relations: complete set      464
Relations: in a group      220
Relations: in a module      464
Relations: in a ring      361
Relations: orthogonality      318
Representation      308
Representation of $SU_2$ , orthogonal      276
Representation of a group      308
Representation, adjoint      304
Representation, complex      310
Representation, conjugate      330
Representation, continuous      313
Representation, dimension of      308
Representation, faithful      308
Representation, induced      343
Representation, irreducible      315
Representation, matrix      308
Representation, permutation      182 322
Representation, reducible      315
Representation, regular      322
Representation, sign      320
Representation, unitary      311
Representations: direct sum of      315
Representations: isomorphism of      316
Representative element      55
Residue class      64
Residue of a polynomial      354
Resolvent cubic      564
Restriction: crystallographic      169
Restriction: of a form      248
Restriction: of a linear transformation      116
Restriction: of an operation      181
Restriction: to a subgroup      60
Riemann existence theorem      519
Riemann surface      376 518
Right coset      59
Right inverse      7
Right multiplication      18
Rigid motion      127 156
Ring      346
Ring homomorphism      353
Ring homomorphism, kernel of      356
Ring of integers      348 413
Ring, characteristic of      358
Ring, localization of      385
Ring, Noetherian      468
Ring, noncommutative      346
Ring, quotient      359
Ring, relations in      361
Ring, zero      347
Rings: extension of      364
Rings: homomorphism of      353
Rings: isomorphism of      353
Rings: product of      380
Root: multiple      508
Root: of unity      512
Rotation      124 157
Rotation group      125
Rotational symmetry      156
Row echelon matrix      14
Row index      1
Row operator      12
Row reduction      12
Row vector      2
Ruler and compass construction      500
scalar      2
Scalar matrix      52
Scalar multiplication      2 78 86
Schur's lemma      326 331 484
Schwarz inequality      248
Second isomorphism theorem      236 484
Self-adjoint      251
Semidefinite      263
Semigroup      77
Semigroup, free      217
Set: bounded      595
Set: cardinality of      586
Set: centrally symmetric      427
Set: closed      594
Set: compact      595
Set: convex      427
Set: finite      586
Set: multiplicative      384
Set: open      593—594
Set: order of      587
Set: ordered      87
Set: real algebraic      286
Sheets      520
Shift operator      120 477
Sieve      403
Sign of a permutation      26
Sign representation      320
Signature of a form      245
Similar lattice      398 425
Similar matrices      116
Simple group      201 295
Simple group, finite      299
Simple module      484
Simply connected      278
Single-valued function      518
Singular operator      121
Singular point      387 405
Size function      397
Skew-symmetric form      238 260
Skew-symmetric matrix      260
Space: Euclidean      247
Space: projective      277
Space: vector      86
span      88 100
Special orthogonal group      124 271
Special unitary group      271
Speciallinear group      271
Spectral theorem      253
Sphere      273
Spin      277
Spin group      277
Split prime      425
Splitting field      540
Sporadic group      300
Square-free in teger      411
Stabilizer      177
Standard basis      26 90 454
Standard basis, symplectic      261
Standard Hermitian product      250
Stark      416
Structure Theorem: for abelian groups      472
Structure Theorem: for modules      475
Subfield      82
Subfield, conjugate      559
Subfield, real      568
Subgroup      44
Subgroup, characteristic      234
Subgroup, commutator      234
Subgroup, conjugate      179
Subgroup, generators of      48
Subgroup, index of      57
Subgroup, normal      52
Subgroup, one-parameter      283
Subgroup, proper      45
Subgroup, restriction to      60
Subgroup, Sylow      206
Subgroup, transitive      560
Submodule      451
Submodules: direct sum of      471
Submodules: independent      472
Subring      345
Subset      602
Subset, proper      602
subspace      79
Subspace, G-invariant      314
Subspace, proper      87
Subspace, T-invariant      116 314
Subspaces: direct sum of      102
Subspaces: independent      102
Subspaces: sum of      102
Substitution Principle      353
Successor function      348
Sum of subspaces      102
Surface, Riemann      376 518
Surjection      586
Surjective map      586
Suslin      482
Sylow subgroup      206
Sylow theorem      205
Sylvester's law      245
Symbolic adjunction      506
Symmetric form      238
Symmetric function      547
Symmetric function, elementary      547
Symmetric group      43
Symmetric operator      255
Symmetric relation      53
Symmetric. matrix      238
Symmetries, group of      156
Symmetry      156 176
Symmetry, bilateral      155
Symmetry, glide      156
Symmetry, Hermitian      250
Symmetry, rotational      156
Symmetry, translational      156
Symplectic basis      261
Symplectic group      271
Table: character      320
Table: multiplication      40
Tangent line      387
Tangent vector      286
Tangent vector field      295
Tangent, infinitesimal      288
Tartaglia      543
Tetrahedral group      184
Third isomorphism theorem      236 360 484
Todd — Coxeter algorithm      223
Torus      524
Total ordering      588
Trace of a matrix or an operator      123
Transcendence basis      525
Transcendence degree      526
Transcendental element      493
Transcendental extension      525
Transcendental number      346
Transform, Cayley      306
Transformation: G-invariant      325
Transformation: linear      109
Transformation: Lorentz      271
Transitive operation      177
Transitive relation      53
Transitive subgroup      560
Translation      128 157
Translation group      167
Translation in a group      292
Translation in the plane      157
Translation, left      292
Translational symmetry      156
Transpose matrix      18
Transposition      25 212
Triangle group      235
Triangle inequality      248
Triangular matrix      6
Trisection of an angle      505
Trivial solution      16
Union of subsets      602
Unipotent element      381
Unipotent operator      153
Unique factorization domain      394
UNIT      347
Unit element      347
Unit ideal      357
Unit vector      124
Unit, matrix      10
Unitary group      252 271
Unitary matrix      252
Unitary operator      253
Unitary representation      311
Unity, root of      512
Upper bound      588
Upper triangular matrix      6
Vandermonde determinant      36
Variety, algebraic      373
Vector      78 450
Vector addition      78 86
Vector bundle      483
Vector field, tangent      295
Vector space      86
Vector space, basis of      90
Vector space, dimension of      93
Vector space, finite-dimensional      91
Vector space, infinite-dimensional      100
Vector spaces: direct sum of      102
Vector spaces: isomorphism of      87
Vector, characteristic      117
Vector, column      2
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте