Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Artin M. — Algebra
Artin M. — Algebra



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Algebra

Автор: Artin M.

Аннотация:

This is a superb book to introduce any math major to the most important ideas of abstract algebra. How often does a mathematician with the world renowned research stature of professor Artin choose to devote the time and effort to write a beginning book in essentially his specialty (he is a famous algebraic geometer), and really make the ideas understandable to the young student? Primarily when he has to teach the course, and wants a suitable source to teach from. That is apparently the genesis of this book, which took birth as class notes for the undergraduate algebra course at MIT taught several times by Professor Artin. This fine book can serve well as an introduction, or second course in algebra, at either honors or upper undergraduate level, or even first year graduate level, (although it omits one topic, multilinear and tensor algebra that grad students will eventually need). The material obviously rolls off the author's fingertips, and the reader is the beneficiary, since it all looks easy to us too, although one must definitely think along the way. With the easily defensible belief that the most important groups in mathematics are linear ones, the author begins with matrices, carries these illustrative examples throughout the treatment of groups, and even includes a beautiful introductory section on some important classical lie groups that cannot be found in any other comparable beginning algebra text. When an author is a true master, as here, he is not limited to mimicking the topics found in other successful texts but can cover each topic as he chooses and to the depth he wishes. Other unique touches are a section on divisibility in number fields, including Minkowski's geometric proof of the finiteness of the class group. This is the best modern introduction to abstract algebra available.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1991

Количество страниц: 618

Добавлена в каталог: 09.12.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Jacobi identity      291
Jordan block      480
Jordan form      480
Kaleidoscope      166
Kernel: of a group homomorphism      52
Kernel: of a linear transformation      110
Kernel: of a module homomorphism      451
Kernel: of a ring homomorphism      356
Killing form      304
Klein Four group      48
kronecker      403 570
Kummer extension      566
Lagrange      560
Lagrange interpolation      444
Lagrange's theorem      58
Latitude      274
Lattice      168
Lattice group      172
Lattice point, half      417
Lattices, similar      397 425
Laurent polynomials      367
Law of composition      39
Law of composition, external      80
Law of composition, induced      44
Leading coefficient      350
Left coset      57
Left inverse      7
Left multiplication      9 176
Left operation      176
Left translation      292
Length of a vector      125 247
Lie algebra      291
Lie bracket      290
Lie type, group of      299
Line      401
Line, tangent      387
linear combination      10 87
Linear combination, finite      100
Linear combination, formal      94
Linear equation      8
Linear group      270
Linear group, dimension of      293
Linear operator      270
Linear relation      88
Linear transformation      109
Linear transformation, kernel of      110
Linear transformation, matrix of      112
Linear transformation, restriction of      116
Linearity, conjugate      250
Linearly dependent      88 101
Linearly independent      88 101
Localization of a ring      385
longitude      274
Lorentz form      243
Lorentz group      271
Lorentz transformation      271
Lueroth's theorem      555
Main Lemma      422
Main theorem of Galois theory      542
Manifold      596
Map: bijective      586
Map: continuous      595
Map: domain of      585
Map: fibre of      55
Map: image of      585
Map: inclusion      51
Map: injective      586
Map: range of      585
Map: surjective      586
Map: zero      353
Mapping property: of products      62
Mapping property: of quotient groups      221
Mapping property: of quotient modules      452
Mapping property: of quotient rings      360
Mapping property: of the free group      220
Maschke's Theorem      316
Matrices: congruent      270
Matrices: similar      116
Matrix      1
Matrix addition      2
Matrix entries      1
Matrix multiplication      3
Matrix of a form      239
Matrix of a linear transformation      112
Matrix of change of basis      98
Matrix representation      308
Matrix unit      11
Matrix, adjoint      29 251
Matrix, diagonal      6
Matrix, elementary      11
Matrix, exponential of      138
Matrix, hermitian      251
Matrix, identity      6
Matrix, inverse      7
Matrix, invertibJe      6
Matrix, nilpotent      32
Matrix, normal      259
Matrix, orthogonal      124
Matrix, permutation      25
Matrix, positive      119
Matrix, positive definite      241 252
Matrix, presentation      465
Matrix, row echelon      14
Matrix, scalar      27
Matrix, skew-symmetric      260
Matrix, symmetric      238
Matrix, trace of      98
Matrix, transpose      18
Matrix, triangular      6
Matrix, unitary      252
Matrix, upper triangular      6
Matrix, zero      6
Matthieu group      300
Maximal element      588
Maximal ideal      370
Measure, Haar      313
Minimal polynomial      489
Minkowski's Lemma      427
Minors      153 484—485 491
Minors, expansion by      20
Modular arithmetic      64
Module      450
Module, basis of      454
Module, faithful      491
Module, finitely generated      454
Module, free      454
Module, generators of      454
Module, presentation of      465
Module, rank of      455
Module, relations in      464
Module, simple      484
Modules: direct sum of      471
Modules: homomorphism of      451
Modules: isomorphism of      451
Modules: product of      474
Modules: Structure Theorem for      475
Monic polynomial      350
Monomial      350
Monster      300
Motion: orientation-preserving, reversing      128 157
Motion: rigid      127 156
Motions, group of      127
Multi-index      352
multi-valued function      518
Multiple root      377 508
Multiplication table      40
Multiplication: coset      68
Multiplication: left      9 176
Multiplication: matrix      3
Multiplication: right      18
Multiplication: scalar      2 78 86
Multiplicative set      384
Multiplicity of intersection      387
Nakayama lemma      491
Natural numbers      348
Negative definite      264
Neighborhood      594
Nilpotent element      365
Nilpotent matrix      32
Nilpotent operator      146
Nilradical      381
Noetherian ring      468
Noncommutative ring      345
Nondegenerate form      244
Nonsingular operator      121
Nonsingular point      387
Norm: Frobenius      153
Norm: of an element      414
Norm: of an ideal      425
Normal matrix or operator      259
normalizer      204
Null space of a form      244
Null vector      244
Nullity      110
Nullstellensatz      371
Number field      450
Number field, quadratic      411
Number: algebraic      345
Number: class      417 426
Number: Fibonacci      154
Number: transcendental      345
Numbers, natural      348
Octahedral group      184
Odd permutation      26
One-parameter subgroup      283
Open ball      593
Open set      594
Operation: elementary      18
Operation: faithful      183
Operation: left      176
Operation: of a group      176 309
Operation: partial      227
Operation: restriction of      180
Operation: transitive      177
Operator      115
Operator, determinant of      123
Operator, hermitian      253
Operator, linear      270
Operator, nilpotent      146
Operator, nonsingular      121
Operator, normal      259
Operator, orthogonal      126 255
Operator, row      12
Operator, shift      120 477
Operator, singular      121
Operator, symmetric      255
Operator, trace of      123
Operator, unipotent      153
Operator, unitary      253
Orbit      177
Order: by inclusion      588
Order: of a finite field      509
Order: of a group      47
Order: of a set      587
Order: of an element      47
Order: partial      588
Order: total      588
Ordered set      87 588
Orientation-preserving or reversing motion      128 157
Orthogonal basis      244
Orthogonal complement      243
Orthogonal group      124 270
Orthogonal matrix      124
Orthogonal operator      126 255
Orthogonal projection      249
Orthogonal representation of $SU_2$      276
Orthogonal vectors      126 241 252
Orthogonality relations      318
Orthonormal basis      126 241 252
p-group      199
Paraboloid      258
Partial fractions      441
Partial operation      227
Partial ordering      588
Partially symmetric function      561
Partition      53
Path      77
Path-connected      77
Peano's axioms      348
Permanence of identities      456
Permutation      25 43 211 586
Permutation matrix      25
Permutation representation      182 322
Permutation, cyclic      25
Permutation, even      26
Permutation, odd      26
Permutation, sign of      26
Pick's theorem      490
Pidgeonhole principle      587
Pivot      14
Plane, translat;on in      157
Point group      168
Point, fixed      162
Point, nonsingular      387
Point, singular      387 405
Polar decomposition      304
Pole      373
Polynomial      350
Polynomial, characteristic      121
Polynomial, cyclotomic      405
Polynomial, degree of      350
Polynomial, evaluation of      353
Polynomial, irreducible      390 494
Polynomial, Laurent      367
Polynomial, minimal      489
Polynomial, monic      350
Polynomial, primitive      399
Polynomial, residue of      354
Positive definite      241 252
Positive matrix      119
Presentation matrix      465
Presentation of a module      465
Prime element      395
Prime factorization      395
Prime field      83
Prime ideal      385 420
Prime: Gauss      406
Prime: ramified      425
Prime: split      425
Primitive element of a field extension      552
Primitive element of a lattice      172
Primitive polynomial      399
Principal ideal      357
Principal ideal domain      396
Principle, Substitution      353
Product group      61
Product ideal      419
Product ring      380
Product set      602
Product: mapping property of      62
Product: of modules      474
Product: of subsets of a group      66
Projection      61
Projection, orthogonal      249
Projective group      296
Projective space      277
Proper divisor      392
Proper ideal      357
Proper subgroup      45
Proper subspace      87
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте