Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Artin M. — Algebra
Artin M. — Algebra



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Algebra

Автор: Artin M.

Аннотация:

This is a superb book to introduce any math major to the most important ideas of abstract algebra. How often does a mathematician with the world renowned research stature of professor Artin choose to devote the time and effort to write a beginning book in essentially his specialty (he is a famous algebraic geometer), and really make the ideas understandable to the young student? Primarily when he has to teach the course, and wants a suitable source to teach from. That is apparently the genesis of this book, which took birth as class notes for the undergraduate algebra course at MIT taught several times by Professor Artin. This fine book can serve well as an introduction, or second course in algebra, at either honors or upper undergraduate level, or even first year graduate level, (although it omits one topic, multilinear and tensor algebra that grad students will eventually need). The material obviously rolls off the author's fingertips, and the reader is the beneficiary, since it all looks easy to us too, although one must definitely think along the way. With the easily defensible belief that the most important groups in mathematics are linear ones, the author begins with matrices, carries these illustrative examples throughout the treatment of groups, and even includes a beautiful introductory section on some important classical lie groups that cannot be found in any other comparable beginning algebra text. When an author is a true master, as here, he is not limited to mimicking the topics found in other successful texts but can cover each topic as he chooses and to the depth he wishes. Other unique touches are a section on divisibility in number fields, including Minkowski's geometric proof of the finiteness of the class group. This is the best modern introduction to abstract algebra available.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1991

Количество страниц: 618

Добавлена в каталог: 09.12.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Existence of factorizations      393
Existence theorem, Riemann      519
Expansion by minors      20
Exponential of a matrix      138
Expressible by radicals      571
Extension field      492
Extension: algebraic      500
Extension: biquadratic      539
Extension: cubic      497
Extension: cyclotomic      567
Extension: Galois      540
Extension: Kummer      566
Extension: pure transcendental      525
Extension: quadratic      497
Extension: ring      364
Extension: transcendental      525
External law of composition      81
Factorization: existence of      393
Factorization: irreducible      395
Factorization: prime      395
Faithful module      491
Faithful operation      183
Faithful representation      308
Faltings      437
Fermat equation      409
Fermat's last theorem      437
Fermat's theorem      105
Fibonacci numbers      154
Fibration, Hopf      280
Fibre of a map      55
Field      83
Field extension      492
Field extension, degree of      497
Field extension, finite      497
Field extension, generators of      495
Field extensions, isomorphism of      496
Field of fractions      369
Field, algebraically closed      527
Field, automorphism of      539
Field, characteristic of      86
Field, cyclotomic      567
Field, finite      492 509
Field, fixed      540
Field, function      493 516
Field, intermediate      542
Field, number      492
Field, order of      509
Field, prime      83
Field, splitting      540
Finite extension      497
Finite field      492 509
Finite linear combination      100
Finite set      586
Finite simple group      299
Finite-dimensional vector space      91
Finitely generated module      454
First isomorphism theorem      68 360 452
Fixed field      540
Fixed point      162
Fixed point theorem      162 199
Form: bilinear      238
Form: Hermitian      250
Form: indefinite      243
Form: invariant      311
Form: Jordan      480
Form: Killing      304
Form: Lorentz      243
Form: matrix of      239
Form: nondegenerate      244
Form: null space of      244
Form: positive definite      241 252
Form: quadratic      256
Form: restriction of      248
Form: signature of      245
Form: skew-symmetric      238 260
Form: symmetric      238
Formal linear combination      94
Four group      48
FRACTION      369
Fraction field      369
Fractions, partial      441
Free Abelian group      223
Free group      219
Free group, mapping property of      220
Free module      454
Free semigroup      217
Frobenius norm      153
Frobenius reciprocity      343
Function      586
Function field      493 516
Function, class      318
Function, continuous      594
Function, inverse      586
Function, multi-valued      519
Function, partially symmetric      561
Function, rational      369 516
Function, single-valued      519
Function, size      397
Function, successor      348
Function, symmetric      547
Fundamental domain      195
Fundamental Theorem: of Algebra      527
Fundamental Theorem: of Arithmetic      390
G-invariant form      311
G-invariant stibspace      314
G-invariant transformation      325
Galois      570
Galois extension      540
Galois group      539 558
Galois theory, main theorem of      541
Gauss integers      345
Gauss prime      406
Gauss's lemma      400
Gaussian elimination      12
Generallinear group      43 453
Generators: of a field extension      495
Generators: of a group      220
Generators: of a module      454
Generators: of a subgroup      48
Genus      534
Glide reflection      157
Glide symmetry      156
Gram — Schmidt procedure      241
Gravity, center of      163
Greatest common divisor      46
Group      42
Group homomorphism      51
Group homomorphism, kernel of      51
Group of Lie type      300
Group of motions      127
Group of symmetries      156
Group operation      176 309
Group representation      308
Group, abelian      42
Group, affine      306
Group, algebraic      289 299
Group, alternating      52
Group, automorphism of      50
Group, center of      52
Group, character      325
Group, class      426
Group, classical      270
Group, compact      313
Group, complex algebraic      199
Group, crystallographic      172 187
Group, cyclic      46 164 184
Group, dihedral      164 184
Group, discrete      166 167
Group, exceptional      299
Group, free      219
Group, free abelian      222
Group, Galois      539 558
Group, general linear      43 453
Group, generators of      220
Group, icosahedral      184
Group, ideal class      429
Group, infinite cyclic      46
Group, lattice      172
Group, linear      270
Group, Lorentz      271
Group, Matthieu      300
Group, octahedral      184
Group, order of      47
Group, orthogonal      124 271
Group, point      168
Group, product      61
Group, projective      296
Group, quaternion      48
Group, quotient      67
Group, real algebraic      289
Group, relations in      220
Group, rotation      125
Group, simple      201 299
Group, special linear      271
Group, special orthogonal      124 271
Group, special unitary      271
Group, spin      278
Group, sporadic      300
Group, symmetric      43
Group, symplectic      271
Group, tetrahedral      184
Group, translation      167
Group, translation in      292
Group, triangle      235
Group, unitary      252 271
Groups: abelian, Structure Theorem      472
Groups: classification of      49
Groups: homomorphism of      51
Groups: isomorphism of      49
Haar measure      314
Half integer      413
Half lattice point      417
Hermitian form      250
Hermitian matrix      251
Hermitian operator      253
Hermitian product      250
Hermitian symmetry      250
Hilbert basis theorem      469
Hilbert nullstellensatz      371
Homeomorphism      595
Homogeneity      292
Homogeneous equation      16
Homomorphism: image of      51
Homomorphism: of groups      51
Homomorphism: of modules      451
Homomorphism: of rings      353
Hopf fibration      276 280
Hyperboloid      258
Hypervector      96
Icosahedral group      184
Ideal      356
Ideal class      417 425
Ideal class group      429
Ideal element      356
Ideal, generated by a set      357
Ideal, maximal      370
Ideal, norm of      425
Ideal, prime      420
Ideal, principal      357
Ideal, product      419
Ideal, proper      357
Ideal, unit      357
Ideal, zero      357
Ideals, cancellation law for      422
Idempotent element      382
Identities, permanence of      456
Identity      456
Identity element      41
Identity matrix      6
Image: inverse      586
Image: of a homomorphism      51
Image: of a map      586
Image: of an element      586
Imaginary part      137
Inclusion map      51
Inclusion, ordering by      588
Indefinite form      243
Independent elements      454
Independent submodules      472
Independent subspaces      102
Independent, linearly      88 101
Index: column      1
Index: multi      352
Index: of a subgroup      57
Index: row      1
indices      25
Induced law of composition      44
Induced representation      343
Induction      590
Induction axiom      348
Induction, complete      380 592
Inductive definition      348
Inequality: Schwarz      248
Inequality: triangle      248
Infinite cyclic group      46
Infinite dimensional space      100
Infinitesimal element      287 365
Infinitesimal tangent      288
Initial conditions      137
Injection      586
Injective function, map      586
Integer: algebraic      410
Integer: half      413
Integer: square-free      411
Integers: congruence of      64
Integers: Gauss      345
Integers: ring of      348 413
Integral domain      368
Intermediate field      542
Interpolation, Lagrange      444
Intersection: multiplicity of      387
Intersection: of subgroups      60
Intersection: of subsets      602
Invariant form      311
Invariant subspace      116 314
Inverse      42
Inverse function      586
Inverse image      55 586
Inverse matrix      7
Inverse, left      7
Inverse, right      7
Invertible element      42
Invertible matrix      6
Irreducible algebraic curve      387
Irreducible character      316
Irreducible element      392
Irreducible factorization      395
Irreducible polynomial      390
Irreducible polynomial for an element      494
Irreducible representation      315
Isometry      156
Isomorphic field extensions      496
Isomorphism: class      49
Isomorphism: of branched coverings      519
Isomorphism: of field extensions      496
Isomorphism: of groups      49
Isomorphism: of modules      451
Isomorphism: of representations      316
Isomorphism: of rings      353
Isomorphism: of vector spaces      87
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте